LEADER 05443nam 22007215 450 001 9910298365303321 005 20200707013326.0 010 $a3-319-00473-5 024 7 $a10.1007/978-3-319-00473-0 035 $a(CKB)3710000000094966 035 $a(EBL)1698104 035 $a(OCoLC)881165909 035 $a(SSID)ssj0001186807 035 $a(PQKBManifestationID)11629596 035 $a(PQKBTitleCode)TC0001186807 035 $a(PQKBWorkID)11240601 035 $a(PQKB)10512873 035 $a(MiAaPQ)EBC1698104 035 $a(DE-He213)978-3-319-00473-0 035 $a(PPN)177825936 035 $a(EXLCZ)993710000000094966 100 $a20140326d2014 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aPhysics of Lakes $eVolume 3: Methods of Understanding Lakes as Components of the Geophysical Environment /$fby Kolumban Hutter, Irina P. Chubarenko, Yongqi Wang 205 $a1st ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (660 p.) 225 1 $aAdvances in Geophysical and Environmental Mechanics and Mathematics,$x1866-8348 300 $aDescription based upon print version of record. 311 $a3-319-00472-7 320 $aIncludes bibliographical references at the end of each chapters and indexes. 327 $aBarotropic Wind-induced Motions in a Shallow Lake -- Response of a Stratified Alpine Lake to External Wind Fields ? Numerical Prediction and Comparison with Field Observations -- Comparing Numerical Methods for Convectively-Dominated Problems -- Comparing Different Numerical Treatments of Advection Terms for Wind-Induced Circulations in Lakes -- Subgrid-Scale Parameterization in Numerical Simulations of Lake Circulation -- Instruments and Sensors -- Measuring Methods and Techniques -- Dimensional Analysis, Similitude and Model Experiments -- Prograding and Retrograding Hypo- and Hyperpycnal Deltaic Formations into Quiescent Ambients -- Sediment Transport in Alluvial Systems. 330 $aThe ongoing thread in this volume of Physics of Lakes is the presentation of different methods of investigation for processes taking place in real lakes with a view to understanding lakes as components of the geophysical environment. It is divided into three parts. Part I is devoted to numerical modeling techniques and demonstrates that (i) wind-induced currents in depth-integrated models can only adequately predict current fields for extremely shallow lakes, and (ii) that classical multi-layered simulation models can only adequately reproduce current and temperature distributions when the lake is directly subjected to wind, but not the post-wind oscillating response. This makes shock capturing discretization techniques and Mellor-Yamada turbulence closure schemes necessary, as well as extremely high grid resolution to reduce the excessive numerical diffusion. Part II is devoted to the presentation of principles of observation and laboratory experimental procedures. It details the principles of operation for current, temperature, conductivity and other sensors applied in the field. It also discusses the advantages and limitations of common measuring methods like registration from stationary or drifting buoys, sounding and profiling from a boat, etc. Questions of data accuracy, quality, and reliability are also addressed. The use of laboratory experiments on a rotating platform is based on an exposition of dimensional analysis and model theory and illustrated using Lake Constance as an example. Part III gives an account of the dynamics of lake water as a particle-laden fluid, which, coupled with the transport of the bottom sediments, leads to morphodynamic changes of the bathymetry in estuarine and possibly whole lake regions. An elegant spatially one-dimensional theory makes it possible to derive analytic solutions of deltaic formations which are corroborated by laboratory experiments. A full three-dimensional description of the evolution of the alluvial bathymetry under prescribed tributary sediment input indicates a potential subject for future research. 410 0$aAdvances in Geophysical and Environmental Mechanics and Mathematics,$x1866-8348 606 $aGeophysics 606 $aOceanography 606 $aGeoecology 606 $aEnvironmental geology 606 $aGeophysics/Geodesy$3https://scigraph.springernature.com/ontologies/product-market-codes/G18009 606 $aOceanography$3https://scigraph.springernature.com/ontologies/product-market-codes/G25005 606 $aGeoecology/Natural Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/U21006 615 0$aGeophysics. 615 0$aOceanography. 615 0$aGeoecology. 615 0$aEnvironmental geology. 615 14$aGeophysics/Geodesy. 615 24$aOceanography. 615 24$aGeoecology/Natural Processes. 676 $a551.482 700 $aHutter$b Kolumban$4aut$4http://id.loc.gov/vocabulary/relators/aut$047891 702 $aChubarenko$b Irina P$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aWang$b Yongqi$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910298365303321 996 $aPhysics of Lakes$92520030 997 $aUNINA