LEADER 06646nam 22007815 450 001 9910298327603321 005 20200703084543.0 010 $a3-319-05615-8 024 7 $a10.1007/978-3-319-05615-9 035 $a(CKB)3710000000212012 035 $a(DE-He213)978-3-319-05615-9 035 $a(SSID)ssj0001295362 035 $a(PQKBManifestationID)11843688 035 $a(PQKBTitleCode)TC0001295362 035 $a(PQKBWorkID)11356059 035 $a(PQKB)10287984 035 $a(MiAaPQ)EBC6313054 035 $a(MiAaPQ)EBC5592770 035 $a(Au-PeEL)EBL5592770 035 $a(OCoLC)883207842 035 $a(PPN)179927124 035 $a(EXLCZ)993710000000212012 100 $a20140705d2014 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aModeling Dynamic Biological Systems /$fby Bruce Hannon, Matthias Ruth 205 $a2nd ed. 2014. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2014. 215 $a1 online resource (XVI, 434 p. 298 illus., 280 illus. in color.) 225 1 $aModeling Dynamic Systems,$x2199-2606 300 $aIncludes index. 311 $a3-319-05614-X 327 $aI. INTRODUCTION -- 1. Modeling Dynamic Biological Systems -- 2. Exploring Dynamic Biological Systems -- 3. Risky Population -- 4. Steady State, Oscillation and Chaos in Population Dynamics -- 5. Spatial Dynamics.- II. PHYSICAL AND BIOCHEMICAL MODELS.- 6. Law of Mass Action -- 7. Catalyzed Product -- 8. Two-Stage Nutrient Uptake -- 9. Iodine Compartment -- 10. The Brusselator -- 11. Signal Transmission -- III. Genetic Models -- 12. Mating and Mutation of Alleles -- 13. Artificial Worms -- 14. Langur Infanticide and Long-term Matriline Fitness -- IV. MODELS OF ORGANISM -- 15. Odor Sensing -- 16. Stochastic Resonance -- 17. Heart Beat -- 18. Bat Thermo-Regulation -- 19. The Optimum Plant -- 20. Soybean Plant Growth -- 21. Infectious Diseases -- VI. SINGLE POPULATION MODELS -- 22. Adaptive Population Control -- 23. Roan Herds -- 24. Population Dynamics of Voles -- 25. Lemming Population Dynamics -- 26. Multi-Stage Insect Models -- 27. Two Age-Class Parasites -- 28. Monkey Travels -- 29. Biosynchronicity -- VII. MULTIPLE POPULATION MODELS -- 30. Plant Microbe Interaction -- 31. Wildebeest -- 32. Nicholson-Bailey Host-Parasite Interaction -- 33. Diseased and Healthy Immigrating Insects -- 34. Two-Species Colonization Model -- 35. Herbivore-Algae Predator-Prey Dynamics -- 36. The Grass Carp -- 37. Recruitment and Trophic Dynamics of Gizzard Shad -- 38. Salamander Dispersal. 39. Quail Movement -- 40. Modeling Spatial Dynamics of Spatial Predator-Prey Interactions in a Changing -- VII. CATASTROPHE AND SELF-ORGANIZATION -- 41. Catastrophe -- 42. Spruce Budworm Dynamics -- 43. Game of Life -- 44. Daisyworld -- VIII. CONCLUSION -- 45. Building a Modeling Community.                                                                                                                                                                                                                                                                                                                                                                               . 330 $aMany biologists and ecologists have developed models that find widespread use in theoretical investigations and in applications to organism behavior, disease control, population and metapopulation theory, ecosystem dynamics, and environmental management.  This book captures and extends the process of model development by concentrating on the dynamic aspects of these processes and by providing tools that virtually anyone with basic knowledge in the Life Sciences can use to develop meaningful dynamic models.  Examples of the systems modeled in the book range from models of cell development, the beating heart, the growth and spread of insects, spatial competition and extinction, to the spread and control of epidemics, including the conditions for the development of chaos.  Key Features ·         Easy-to-learn and easy-to-use software ·         Includes examples from many subdisciplines of biology, covering models of cells, organisms, populations, and metapopulations ·         No prior computer or programming experience required Key Benefits ·         Learn how to develop modeling skills and system thinking on your own rather than use models developed by others ·         Easily run models under alternative assumptions and investigate the implications of these assumptions for the dynamics of the biological system being modeled ·  Develop skills to assess the dynamics of biological systems. 410 0$aModeling Dynamic Systems,$x2199-2606 606 $aEcology  606 $aBiomathematics 606 $aPopulation 606 $aBiochemistry 606 $aComputers 606 $aEcology$3https://scigraph.springernature.com/ontologies/product-market-codes/L19007 606 $aMathematical and Computational Biology$3https://scigraph.springernature.com/ontologies/product-market-codes/M31000 606 $aPopulation Economics$3https://scigraph.springernature.com/ontologies/product-market-codes/W38000 606 $aBiochemistry, general$3https://scigraph.springernature.com/ontologies/product-market-codes/L14005 606 $aModels and Principles$3https://scigraph.springernature.com/ontologies/product-market-codes/I18016 615 0$aEcology . 615 0$aBiomathematics. 615 0$aPopulation. 615 0$aBiochemistry. 615 0$aComputers. 615 14$aEcology. 615 24$aMathematical and Computational Biology. 615 24$aPopulation Economics. 615 24$aBiochemistry, general. 615 24$aModels and Principles. 676 $a570.113 700 $aHannon$b Bruce$4aut$4http://id.loc.gov/vocabulary/relators/aut$0502061 702 $aRuth$b Matthias$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910298327603321 996 $aModeling Dynamic Biological Systems$92517628 997 $aUNINA