LEADER 03815 am 22007213u 450 001 9910293140603321 005 20230125185327.0 010 $a3-319-69539-8 024 7 $a10.1007/978-3-319-69539-6 035 $a(CKB)4100000003359206 035 $a(DE-He213)978-3-319-69539-6 035 $a(MiAaPQ)EBC5576616 035 $a(Au-PeEL)EBL5576616 035 $a(OCoLC)1066181330 035 $a(oapen)https://directory.doabooks.org/handle/20.500.12854/44149 035 $a(PPN)226698351 035 $a(EXLCZ)994100000003359206 100 $a20180405d2018 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aCosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent$b[electronic resource] /$fby Ammar Wahbi, Lee Heng, Gerd Dercon 205 $a1st ed. 2018. 210 $cSpringer Nature$d2018 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2018. 215 $a1 online resource (X, 33 p. 18 illus., 14 illus. in color.) 311 $a3-319-69538-X 327 $aForeword -- Summary -- 2. In-Situ Destructive Sampling -- 2.1 The Concept of Representivity -- 2.2 Plant Sampling Pattern and Design -- 2.3 Biomass Water Equivalent -- 2.4 Conclusions -- 3. Remote Sensing via Satellite Imagery Analysis -- 3.1 Photo-Reflective Properties of Plants -- 3.2 Satellite Image Analysis -- 3.3 Conclusions -- 4. Estimate of Biomass Water Equivalent via the Cosmic Ray Neutron Sensor -- 4.1 The role of Biomass in the CRNS Calibration -- 4.2 Relationship between Neutrons and Crop Biomass -- 4.3 Dire4ct Relationship between Neutrons and Biomass -- 4.4 Conclusions. 330 $aThis book is published open access under a CC BY 3.0 IGO license. This open access book provides methods for the estimation of Biomass Water Equivalent (BEW), an essential step for improving the accuracy of area-wide soil moisture by cosmic-ray neutron sensors (CRNS). Three techniques are explained in detail: (i) traditional in-situ destructive sampling, (ii) satellite based remote sensing of plant surfaces, and (iii) biomass estimation via the use of the CRNS itself. The advantages and disadvantages of each method are discussed along with step by step instructions on proper procedures and implementation. . 606 $aAgriculture 606 $aHydrology 606 $aEnvironmental sciences 606 $aAgriculture$3https://scigraph.springernature.com/ontologies/product-market-codes/L11006 606 $aHydrology/Water Resources$3https://scigraph.springernature.com/ontologies/product-market-codes/211000 606 $aEnvironmental Science and Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/G37000 610 $aEarth Science 610 $aNuclear 610 $aBiomass Water Equivalent 610 $aSatellite Imagery 610 $aRemote Sensing 610 $aCRNS 610 $aWater Management 610 $aCrop Nutrition 610 $aSoil Management 615 0$aAgriculture. 615 0$aHydrology. 615 0$aEnvironmental sciences. 615 14$aAgriculture. 615 24$aHydrology/Water Resources. 615 24$aEnvironmental Science and Engineering. 676 $a630 700 $aWahbi$b Ammar$4aut$4http://id.loc.gov/vocabulary/relators/aut$0989233 702 $aHeng$b Lee$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aDercon$b Gerd$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910293140603321 996 $aCosmic Ray Neutron Sensing: Estimation of Agricultural Crop Biomass Water Equivalent$92262364 997 $aUNINA