LEADER 01228nam0 2200361 450 001 9910285852203321 005 20181011141651.0 010 $a978-1-4398-4891-3 100 $a20181011d2014---- km y0itay50 ba 101 0 $aeng 102 $aUS 105 $a 001yy 200 1 $aMeasurement, instrumentation, and sensors handbook$eelectromagnetic, optical, radiation, chemical, and biomedical measurement$fedited by Hohn G. Webster, Halit Eren 205 $a2nd ed. 210 $aBoca Raton (FL)$cCRC Press$d2014 215 $aXXVIII, [pag varia]$cill.$d26 cm 610 0 $aApparecchi e strumenti scientifici$aManuali 676 $a530.8$v22 702 1$aWebster,$bJohn G. 702 1$aEren,$bHalit 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910285852203321 952 $a13 SC III N 12$b2175 / 2018$fFINBC 952 $a13 SC III N 13$b2176 / 2018$fFINBC 952 $a13 SC III N 14$b2177 / 2018$fFINBC 952 $a23 02 D 01$b2178 / 2018$fFINAG 952 $a23 02 D 02$b2179 / 2018$fFINAG 952 $a23 02 D 03$b2180 / 2018$fFINAG 959 $aFINBC 959 $aFINAG 996 $aMeasurement, instrumentation, and sensors handbook$91225291 997 $aUNINA LEADER 01451nam a2200445 i 4500 001 991000679629707536 005 20020507172156.0 008 940723s1990 de ||| | eng 020 $a3540181792 035 $ab10742177-39ule_inst 035 $aLE01300608$9ExL 040 $aDip.to Matematica$beng 082 0 $a515.8 084 $aAMS 00A20 084 $aAMS 26A 084 $aAMS 26B 084 $aAMS 26C 084 $aAMS 30E 084 $aAMS 41-XX 084 $aAMS 42-XX 084 $aAMS 52-XX 084 $aQA432.A6213 100 1 $aGamkrelidze, R. V.$0492556 245 10$aAnalysis II :$bconvex analysis and approximation theory /$ced. R. V. Gamkrelidze 250 $aEngl. ed 260 $aBerlin :$bSpringer-Verlag,$cc1990 300 $a255 p. :$bill. ;$c24 cm. 490 0 $aEncyclopaedia of mathematical sciences,$x0938-0396 ;$v14 500 $aIncludes bibliographical references and indexes. 500 $aTransl. from the Russian 650 0$aAsymptotic expansions 650 0$aIntegral representations 650 0$aIntegral transforms 650 0$aOperational calculus 907 $a.b10742177$b23-02-17$c28-06-02 912 $a991000679629707536 945 $aLE013 00A20 EMS11 V.14 (1990)$cV. 14$g1$i2013000005010$lle013$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i10833584$z28-06-02 996 $aAnalysis II$9910839 997 $aUNISALENTO 998 $ale013$b01-01-94$cm$da $e-$feng$gde $h0$i1