LEADER 00749nam0-22002771i-450- 001 990001130580403321 035 $a000113058 035 $aFED01000113058 035 $a(Aleph)000113058FED01 035 $a000113058 100 $a20000920d1969----km-y0itay50------ba 101 0 $aeng 200 1 $aIntroduction to calculus$fR. Bartle$gC. Ionescu Tulcea. 210 $aIllinois$cScott Foresman$d1969 610 0 $aCalcolo 676 $a515 700 1$aBartle,$bRobert Gardner$f<1927-2003> 702 1$aIonescu Tulcea,$bCassius 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001130580403321 952 $a2-I-6$b8482$fMA1 959 $aMA1 996 $aIntroduction to calculus$9345467 997 $aUNINA DB $aING01 LEADER 01009nam0-2200253 --450 001 9910280355103321 005 20180723100616.0 100 $a20180723d1977----kmuy0itay5050 ba 101 0 $aita 102 $aIT 105 $a 001yy 200 1 $aConferenza sul tema: i trasporti ferroviari in Lombardia, servizi regionali e collegamenti internazionali$erelazioni e conclusioni$eMilano, 21 luglio e 28-29 settembre 1976$fGiunta regionale, Assessorato ai Trasporti 210 $aMilano$c[s. n.]$d1977$eMilano$gA. Cordani 215 $a86 p.$d30 cm 610 0 $aTrasporti ferroviari$aLombardia 610 0 $aTrasporti ferroviari 710 02$aLombardia. $b Giunta regionale. $b Assessorato ai trasporti$0437292 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910280355103321 952 $a19.1031$b1001/2018$fDARST 959 $aDARST 996 $aConferenza sul tema: i trasporti ferroviari in Lombardia, servizi regionali e collegamenti internazionali$91508018 997 $aUNINA LEADER 02962nam 22004575a 450 001 9910151933203321 005 20091109150325.0 010 $a3-03719-570-3 024 70$a10.4171/070 035 $a(CKB)3710000000953843 035 $a(CH-001817-3)100-091109 035 $a(PPN)178155632 035 $a(EXLCZ)993710000000953843 100 $a20091109j20090708 fy 0 101 0 $aeng 135 $aurnn|mmmmamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aThe Statistical Mechanics of Quantum Lattice Systems$b[electronic resource] $eA Path Integral Approach /$fSergio Albeverio, Yuri Kondratiev, Yuri Kozitsky, Michael Ro?ckner 210 3 $aZuerich, Switzerland $cEuropean Mathematical Society Publishing House$d2009 215 $a1 online resource (392 pages) 225 0 $aEMS Tracts in Mathematics (ETM)$v8 330 $aQuantum statistical mechanics plays a major role in many fields such as, for instance, thermodynamics, plasma physics, solid-state physics, and the study of stellar structure. While the theory of quantum harmonic oscillators is relatively simple, the case of anharmonic oscillators, a mathematical model of a localized quantum particle, is more complex and challenging. Moreover, infinite systems of interacting quantum anharmonic oscillators possess interesting ordering properties with respect to quantum stabilization. This book presents a rigorous approach to the statistical mechanics of such systems, in particular with respect to their actions on a crystal lattice. The text is addressed to both mathematicians and physicists, especially those who are concerned with the rigorous mathematical background of their results and the kind of problems that arise in quantum statistical mechanics. The reader will find here a concise collection of facts, concepts, and tools relevant for the application of path integrals and other methods based on measure and integration theory to problems of quantum physics, in particular the latest results in the mathematical theory of quantum anharmonic crystals. The methods developed in the book are also applicable to other problems involving infinitely many variables, for example, in biology and economics. 517 $aStatistical Mechanics of Quantum Lattice Systems 606 $aAnalytical mechanics$2bicssc 606 $aStatistical mechanics, structure of matter$2msc 606 $aFunctional analysis$2msc 615 07$aAnalytical mechanics 615 07$aStatistical mechanics, structure of matter 615 07$aFunctional analysis 686 $a82-xx$a46-xx$2msc 700 $aAlbeverio$b Sergio$044256 702 $aKondratiev$b Yuri 702 $aKozitsky$b Yuri 702 $aRo?ckner$b Michael 801 0$bch0018173 906 $aBOOK 912 $a9910151933203321 996 $aThe Statistical Mechanics of Quantum Lattice Systems$92565446 997 $aUNINA