LEADER 00807nam0-22002771i-450- 001 990001661860403321 005 20050505095249.0 035 $a000166186 035 $aFED01000166186 035 $a(Aleph)000166186FED01 035 $a000166186 100 $a20030910d1969----km-y0itay50------ba 101 0 $afre 200 1 $a<>developpment intensif et multilateral de l'agriculture roumaine$fO. Parpala 210 $aBucarest$cEd. Meridiane$d1969 215 $a61 p.$d16 cm 610 0 $aAgricoltura 676 $a630 700 1$aParpala,$bO.$071702 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990001661860403321 952 $a60 630 C 64$b41920$fFAGBC 959 $aFAGBC 996 $aDeveloppment intensif et multilateral de l'agriculture roumaine$9373350 997 $aUNINA LEADER 03509nam 22006255 450 001 9910279755303321 005 20200705102829.0 010 $a3-319-74073-3 024 7 $a10.1007/978-3-319-74073-7 035 $a(CKB)4100000002892295 035 $a(DE-He213)978-3-319-74073-7 035 $a(MiAaPQ)EBC5590914 035 $a(MiAaPQ)EBC6314572 035 $a(Au-PeEL)EBL5590914 035 $a(OCoLC)1066189725 035 $a(PPN)225550210 035 $a(EXLCZ)994100000002892295 100 $a20180312d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aMultivariable Calculus with Applications /$fby Peter D. Lax, Maria Shea Terrell 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (VIII, 483 p. 231 illus., 1 illus. in color.) 225 1 $aUndergraduate Texts in Mathematics,$x0172-6056 300 $aIncludes index. 311 $a3-319-74072-5 327 $a1. Vectors and matrices -- 2. Functions -- 3. Differentiation -- 4. More about differentiation -- 5. Applications to motion -- 6. Integration -- 7. Line and surface integrals -- 8. Divergence and Stokes? Theorems and conservation laws -- 9. Partial differential equations -- Answers to selected problems -- Index. . 330 $aThis text in multivariable calculus fosters comprehension through meaningful explanations. Written with students in mathematics, the physical sciences, and engineering in mind, it extends concepts from single variable calculus such as derivative, integral, and important theorems to partial derivatives, multiple integrals, Stokes? and divergence theorems. Students with a background in single variable calculus are guided through a variety of problem solving techniques and practice problems. Examples from the physical sciences are utilized to highlight the essential relationship between calculus and modern science. The symbiotic relationship between science and mathematics is shown by deriving and discussing several conservation laws, and vector calculus is utilized to describe a number of physical theories via partial differential equations. Students will learn that mathematics is the language that enables scientific ideas to be precisely formulated and that science is a source for the development of mathematics. 410 0$aUndergraduate Texts in Mathematics,$x0172-6056 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aApplied mathematics 606 $aEngineering mathematics 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 606 $aApplications of Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M13003 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 0$aApplied mathematics. 615 0$aEngineering mathematics. 615 14$aAnalysis. 615 24$aApplications of Mathematics. 676 $a519.535 700 $aLax$b Peter D$4aut$4http://id.loc.gov/vocabulary/relators/aut$042253 702 $aTerrell$b Maria Shea$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910279755303321 996 $aMultivariable Calculus with Applications$92283992 997 $aUNINA