LEADER 03955nam 22007575 450 001 9910279755203321 005 20200704141551.0 010 $a3-319-74350-3 024 7 $a10.1007/978-3-319-74350-9 035 $a(CKB)4100000002892321 035 $a(DE-He213)978-3-319-74350-9 035 $a(MiAaPQ)EBC5578722 035 $a(PPN)225550520 035 $a(EXLCZ)994100000002892321 100 $a20180324d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSeries of Bessel and Kummer-Type Functions /$fby Árpád Baricz, Dragana Jankov Ma?irevi?, Tibor K. Pogány 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XIX, 201 p.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2207 311 $a3-319-74349-X 327 $a1. Introduction and Preliminaries -- 2. Neumann Series -- 3. Kapteyn Series -- 4. Schlomilch Series -- 5. Miscellanea. 330 $aThis book is devoted to the study of certain integral representations for Neumann, Kapteyn, Schlömilch, Dini and Fourier series of Bessel and other special functions, such as Struve and von Lommel functions. The aim is also to find the coefficients of the Neumann and Kapteyn series, as well as closed-form expressions and summation formulas for the series of Bessel functions considered. Some integral representations are deduced using techniques from the theory of differential equations. The text is aimed at a mathematical audience, including graduate students and those in the scientific community who are interested in a new perspective on Fourier?Bessel series, and their manifold and polyvalent applications, mainly in general classical analysis, applied mathematics and mathematical physics. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2207 606 $aFunctions, Special 606 $aSequences (Mathematics) 606 $aFunctions of real variables 606 $aFunctions of complex variables 606 $aDifferential equations 606 $aAstronomy 606 $aAstrophysics 606 $aSpecial Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M1221X 606 $aSequences, Series, Summability$3https://scigraph.springernature.com/ontologies/product-market-codes/M1218X 606 $aReal Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12171 606 $aFunctions of a Complex Variable$3https://scigraph.springernature.com/ontologies/product-market-codes/M12074 606 $aOrdinary Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12147 606 $aAstronomy, Astrophysics and Cosmology$3https://scigraph.springernature.com/ontologies/product-market-codes/P22006 615 0$aFunctions, Special. 615 0$aSequences (Mathematics) 615 0$aFunctions of real variables. 615 0$aFunctions of complex variables. 615 0$aDifferential equations. 615 0$aAstronomy. 615 0$aAstrophysics. 615 14$aSpecial Functions. 615 24$aSequences, Series, Summability. 615 24$aReal Functions. 615 24$aFunctions of a Complex Variable. 615 24$aOrdinary Differential Equations. 615 24$aAstronomy, Astrophysics and Cosmology. 676 $a515.53 700 $aBaricz$b Árpád$4aut$4http://id.loc.gov/vocabulary/relators/aut$0478939 702 $aJankov Ma?irevi?$b Dragana$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aPogány$b Tibor K$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910279755203321 996 $aSeries of Bessel and Kummer-type functions$91749802 997 $aUNINA