LEADER 00804nam0-2200277 --450 001 9910271358203321 005 20180613132747.0 010 $a9780805860474 100 $a20180613d2009----kmuy0itay5050 ba 101 0 $aeng 102 $aUS 105 $a 001yy 200 1 $aEvent History Analysis with Stata$fedited by Hans-Peter Blossfled, Katrin Golsch, Gotz Rohwer 210 $aNew York$cPsycology Press$d2009 215 $aVIII, 300 p.$d23 cm. 676 $a519.1$v22$zita 702 1$aBlossfeld,$bHans-Peter 702 1$aRohwer,$bGötz 702 1$aGolsch,$bKatrin 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a9910271358203321 952 $aVI E 1675$b726/2018$fFSPBC 959 $aFSPBC 996 $aEvent history analysis with Stata$9783579 997 $aUNINA LEADER 03337nam 22006974a 450 001 9910450320603321 005 20200520144314.0 010 $a1-282-35788-3 010 $a0-520-93791-0 010 $a9786612357886 010 $a1-59875-539-0 024 7 $a10.1525/9780520937918 035 $a(CKB)1000000000030755 035 $a(EBL)231923 035 $a(OCoLC)475938357 035 $a(SSID)ssj0000234713 035 $a(PQKBManifestationID)11229287 035 $a(PQKBTitleCode)TC0000234713 035 $a(PQKBWorkID)10241846 035 $a(PQKB)10417527 035 $a(MiAaPQ)EBC231923 035 $a(OCoLC)60407996 035 $a(MdBmJHUP)muse30677 035 $a(DE-B1597)519204 035 $a(OCoLC)1097122981 035 $a(DE-B1597)9780520937918 035 $a(Au-PeEL)EBL231923 035 $a(CaPaEBR)ebr10079957 035 $a(CaONFJC)MIL235788 035 $a(OCoLC)437146303 035 $a(EXLCZ)991000000000030755 100 $a20031224d2005 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aReforming suburbia$b[electronic resource] $ethe planned communities of Irvine, Columbia, and The Woodlands /$fAnn Forsyth 210 $aBerkeley $cUniversity of California Press$dc2005 215 $a1 online resource (396 p.) 300 $aDescription based upon print version of record. 311 $a0-520-24166-5 311 $a0-520-24165-7 320 $aIncludes bibliographical references (p. 341-365) and index. 327 $aIntroduction -- The Irvine ranch -- Columbia -- The Woodlands -- Organizing the metropolis -- Alternatives to sprawl? -- New town planning and the paradoxes of private innovation. 330 $aThe "new community" movement of the 1960's and 1970's attempted a grand experiment in housing. It inspired the construction of innovative communities that were designed to counter suburbia's cultural conformity, social isolation, ugliness, and environmental problems. This richly documented book examines the results of those experiments in three of the most successful new communities: Irvine Ranch in Southern California, Columbia in Maryland, and The Woodlands in the suburbs of Houston, Texas. Based on new research and interviews with developers, designers, and residents, Ann Forsyth traces the evolution, the successes, and the shortcomings of these experiments in urban innovation. Where they succeeded, in areas such as community identity and open space preservation, they provide support for current "smart growth" proposals. Where they did not, in areas such as housing affordability and transportation choices, they offer important insights for today's planners, designers, developers, civic leaders, and others interested in incorporating new forms of development into their designs. 606 $aPlanned communities$zUnited States$vCase studies 607 $aIrvine (Calif.) 607 $aColumbia (Md.) 607 $aWoodlands (Tex.) 608 $aElectronic books. 615 0$aPlanned communities 676 $a307.76/8/0973 700 $aForsyth$b Ann$f1963-$0275531 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910450320603321 996 $aReforming suburbia$92464307 997 $aUNINA LEADER 06644 am 2201465 n 450 001 9910496010803321 005 20240104030724.0 010 $a2-84832-400-7 024 7 $a10.4000/books.apu.14133 035 $a(CKB)5590000000007486 035 $a(FrMaCLE)OB-apu-14133 035 $a(PPN)251071510 035 $a(EXLCZ)995590000000007486 100 $a20201124j|||||||| ||| 0 101 0 $afre 135 $auu||||||m|||| 200 02$aL?Idée sportive, l?idée olympique : quelles réalités au XXIe siècle ?$fOlivier Chovaux, Laurence Munoz, Arnaud Waquet, Fabien Wille 210 $aArras$cArtois Presses Université$d2020 215 $a1 online resource (240 p.) 311 $a2-84832-294-2 330 $aCet ouvrage réunit les principales contributions des intervenants du colloque international « L?idée sportive, l?idée olympique : quelles réalités au xxie siècle ? », qui s?est tenu à Dunkerque les 18 et 19 mai 2012. Conjointement organisé par le Cercle Bernard Jeu (CBJ), l?équipe de Recherche Septentrionale Sport et Société (ER3S, EA 4110), le Comité National Olympique et Sportif Français (CNOSF), l?Académie Nationale Olympique (ANOF), le Comité Régional Olympique et Sportif Nord ? Pas-de- Calais (CROS) et le Syndicat Mixte de la Côte d?Opale (SMCO), il avait pour ambition, à quelques semaines des Jeux olympiques de Londres, d?inviter universitaires, dirigeants et praticiens du sport à une réflexion sereine sur les évolutions contemporaines du sport et de l?olympisme, à partir d?une ré-interrogation de la notion d?« idée olympique » (empruntée à Bernard Jeu) et des éléments qui fondent sa longévité et sa vitalité contemporaines. 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l'idée olympique 517 $aL?Idée sportive, l?idée olympique  517 $aIdée sportive, l'idée olympique 517 $aIdée sportive, l?idée olympique 606 $aHospitality Leisure Sport & Tourism 606 $asport 606 $apresse 606 $amédia 606 $ajeux olympiques 606 $aidée olympique 606 $amedia 606 $aOlympic games 606 $aolympic idea 615 4$aHospitality Leisure Sport & Tourism 615 4$asport 615 4$apresse 615 4$amédia 615 4$ajeux olympiques 615 4$aidée olympique 615 4$amedia 615 4$aOlympic games 615 4$aolympic idea 700 $aCarpentier$b Florence$01313782 701 $aChanavat$b Nicolas$01459027 701 $aChovaux$b Olivier$01285678 701 $aDesbordes$b Michel$01138450 701 $aLe Clinche$b Servane$01459028 701 $aMaës$b Marc$01459029 701 $aMc Namee$b Mike$01459030 701 $aMunoz$b Laurence$01453789 701 $aO?Donnell$b Hugh$0939869 701 $aPapa$b Françoise$01459031 701 $aPuijk$b Roël$01459032 701 $aRenson$b Roland$01459033 701 $aTerret$b Thierry$01285687 701 $aThys$b Hanne$01459034 701 $aTolleneer$b Jan$01459035 701 $aTribalat$b Thierry$01459036 701 $aVigarello$b Georges$0185145 701 $aVintzel$b Jean$01459037 701 $aWille$b Fabien$01235988 701 $aZintz$b Thierry$01459038 701 $aWaquet$b Arnaud$01459039 801 0$bFR-FrMaCLE 906 $aBOOK 912 $a9910496010803321 996 $aL?Idée sportive, l?idée olympique : quelles réalités au XXIe siècle$93658464 997 $aUNINA LEADER 16850nam 2200817 450 001 9910134875803321 005 20230601144514.0 010 $a9781118851555 010 $a1-118-85154-4 010 $a1-118-85152-8 010 $a1-118-85155-2 024 7 $a10.1002/9781118851555 035 $a(CKB)4330000000007298 035 $a(EBL)4653366 035 $a(PQKBManifestationID)16372164 035 $a(PQKBWorkID)14939071 035 $a(PQKB)23515422 035 $a(MiAaPQ)EBC4653366 035 $a(DLC) 2016013688 035 $a(CaBNVSL)mat07601527 035 $a(IDAMS)0b00006485749bc8 035 $a(IEEE)7601527 035 $a(Au-PeEL)EBL4653366 035 $a(CaPaEBR)ebr11251189 035 $a(CaONFJC)MIL950682 035 $a(OCoLC)958550803 035 $a(PPN)267040962 035 $a(EXLCZ)994330000000007298 100 $a20171108d2016 uy 0 101 0 $aeng 181 $ctxt$2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aDesign, control, and application of modular multilevel converters for HVDC transmission systems /$fKamran Sharifabadi, Lennart Harnefors, Hans-Peter Nee, Staffan Norrga, Remus Teodorescu 210 1$aChichester, West Sussex, United Kingdom :$cWiley & Sons,$d2016. 215 $axxiii, 386 s$cill 300 $aDescription based upon print version of record. 311 1 $a9781118851562 311 1 $a1-118-85156-0 320 $aIncludes bibliographical references and index. 327 $a-- Preface xiii -- Acknowledgements xv -- About the Companion Website xvii -- Nomenclature xix -- Introduction 1 -- 1 Introduction to Modular Multilevel Converters 7 -- 1.1 Introduction 7 -- 1.2 The Two-Level Voltage Source Converter 9 -- 1.2.1 Topology and Basic Function 9 -- 1.2.2 Steady-State Operation 12 -- 1.3 Benefits of Multilevel Converters 15 -- 1.4 Early Multilevel Converters 17 -- 1.4.1 Diode Clamped Converters 17 -- 1.4.2 Flying Capacitor Converters 20 -- 1.5 Cascaded Multilevel Converters 23 -- 1.5.1 Submodules and Submodule Strings 23 -- 1.5.2 Modular Multilevel Converter with Half-Bridge Submodules 28 -- 1.5.3 Other Cascaded Converter Topologies 43 -- 1.6 Summary 57 -- References 58 -- 2 Main-Circuit Design 60 -- 2.1 Introduction 60 -- 2.2 Properties and Design Choices of Power Semiconductor Devices for High-Power Applications 61 -- 2.2.1 Historical Overview of the Development Toward Modern Power Semiconductors 61 -- 2.2.2 Basic Conduction Properties of Power Semiconductor Devices 64 -- 2.2.3 P-N Junctions for Blocking 65 -- 2.2.4 Conduction Properties and the Need for Carrier Injection 67 -- 2.2.5 Switching Properties 72 -- 2.2.6 Packaging 73 -- 2.2.7 Reliability of Power Semiconductor Devices 80 -- 2.2.8 Silicon Carbide Power Devices 84 -- 2.3 Medium-Voltage Capacitors for Submodules 92 -- 2.3.1 Design and Fabrication 93 -- 2.3.2 Self-Healing and Reliability 95 -- 2.4 Arm Inductors 96 -- 2.5 Submodule Configurations 98 -- 2.5.1 Existing Half-Bridge Submodule Realizations 99 -- 2.5.2 Clamped Single-Submodule 104 -- 2.5.3 Clamped Double-Submodule 105 -- 2.5.4 Unipolar-Voltage Full-Bridge Submodule 106 -- 2.5.5 Five-Level Cross-Connected Submodule 107 -- 2.5.6 Three-Level Cross-Connected Submodule 107 -- 2.5.7 Double Submodule 108 -- 2.5.8 Semi-Full-Bridge Submodule 109 -- 2.5.9 Soft-Switching Submodules 110 -- 2.6 Choice of Main-Circuit Parameters 112 -- 2.6.1 Main Input Data 112 -- 2.6.2 Choice of Power Semiconductor Devices 114 -- 2.6.3 Choice of the Number of Submodules 115. 327 $a2.6.4 Choice of Submodule Capacitance 117 -- 2.6.5 Choice of Arm Inductance 117 -- 2.7 Handling of Redundant and Faulty Submodules 118 -- 2.7.1 Method 1 118 -- 2.7.2 Method 2 119 -- 2.7.3 Comparison of Method 1 and Method 2 120 -- 2.7.4 Handling of Redundancy Using IGBT Stacks 121 -- 2.8 Auxiliary Power Supplies for Submodules 121 -- 2.8.1 Using the Submodule Capacitor as Power Source 121 -- 2.8.2 Power Supplies with High-Voltage Inputs 123 -- 2.8.3 The Tapped-Inductor Buck Converter 125 -- 2.9 Start-Up Procedures 126 -- 2.10 Summary 126 -- References 127 -- 3 Dynamics and Control 133 -- 3.1 Introduction 133 -- 3.2 Fundamentals 134 -- 3.2.1 Arms 135 -- 3.2.2 Submodules 135 -- 3.2.3 AC Bus 136 -- 3.2.4 DC Bus 136 -- 3.2.5 Currents 136 -- 3.3 Converter Operating Principle and Averaged Dynamic Model 137 -- 3.3.1 Dynamic Relations for the Currents 137 -- 3.3.2 Selection of the Mean Sum Capacitor Voltages 137 -- 3.3.3 Averaging Principle 138 -- 3.3.4 Ideal Selection of the Insertion Indices 140 -- 3.3.5 Sum-Capacitor-Voltage Ripples 141 -- 3.3.6 Maximum Output Voltage 144 -- 3.3.7 DC-Bus Dynamics 146 -- 3.3.8 Time Delays 148 -- 3.4 Per-Phase Output-Current Control 148 -- 3.4.1 Tracking of a Sinusoidal Reference Using a PI Controller 149 -- 3.4.2 Resonant Filters and Generalized Integrators 150 -- 3.4.3 Tracking of a Sinusoidal Reference Using a PR Controller 152 -- 3.4.4 Parameter Selection for a PR Current Controller 153 -- 3.4.5 Output-Current Controller Design 157 -- 3.5 Arm-Balancing (Internal) Control 161 -- 3.5.1 Circulating-Current Control 163 -- 3.5.2 Direct Voltage Control 163 -- 3.5.3 Closed-Loop Voltage Control 166 -- 3.5.4 Open-Loop Voltage Control 168 -- 3.5.5 Hybrid Voltage Control 172 -- 3.6 Three-Phase Systems 175 -- 3.6.1 Balanced Three-Phase Systems 175 -- 3.6.2 Imbalanced Three-Phase Systems 175 -- 3.6.3 Instantaneous Active Power 176 -- 3.6.4 Wye (Y) and Delta (?Æ) Connections 177 -- 3.6.5 Harmonics 177 -- 3.6.6 Space Vectors 178 -- 3.6.7 Instantaneous Power 182. 327 $a3.6.8 Selection of the Space-Vector Scaling Constant 184 -- 3.7 Vector Output-Current Control 184 -- 3.7.1 PR (PI) Controller 186 -- 3.7.2 Reference-Vector Saturation 188 -- 3.7.3 Transformations 188 -- 3.7.4 Zero-Sequence Injection 190 -- 3.8 Higher-Level Control 192 -- 3.8.1 Phase-Locked Loop 193 -- 3.8.2 Open-Loop Active- and Reactive-Power Control 197 -- 3.8.3 DC-Bus-Voltage Control 198 -- 3.8.4 Power-Synchronization Control 200 -- 3.9 Control Architectures 207 -- 3.9.1 Communication Network 209 -- 3.9.2 Fault-Tolerant Communication Networks 211 -- 3.10 Summary 212 -- References 212 -- 4 Control under Unbalanced Grid Conditions 214 -- 4.1 Introduction 214 -- 4.2 Grid Requirements 214 -- 4.3 Shortcomings of Conventional Vector Control 215 -- 4.3.1 PLL with Notch Filter 216 -- 4.4 Positive/Negative-Sequence Extraction 219 -- 4.4.1 DDSRF-PNSE 219 -- 4.4.2 DSOGI-PNSE 221 -- 4.5 Injection Reference Strategy 223 -- 4.5.1 PSI with PSI-LVRT Compliance 225 -- 4.5.2 MSI-LVRT Mixed Positive- and Negative-Sequence Injection with both PSI-LVRT and NSI-LVRT Compliance 226 -- 4.6 Component-Based Vector Output-Current Control 226 -- 4.6.1 DDSRF-PNSE-Based Control 226 -- 4.6.2 DSOGI-PNSE-Based Control 227 -- 4.7 Summary 228 -- References 231 -- 5 Modulation and Submodule Energy Balancing 232 -- 5.1 Introduction 232 -- 5.2 Fundamentals of Pulse-Width Modulation 233 -- 5.2.1 Basic Concepts 233 -- 5.2.2 Performance of Modulation Methods 234 -- 5.2.3 Reference Third-Harmonic Injection in Three-Phase Systems 235 -- 5.3 Carrier-Based Modulation Methods 236 -- 5.3.1 Two-Level Carrier-Based Modulation 236 -- 5.3.2 Analysis by Fourier Series Expansion 237 -- 5.3.3 Polyphase Systems 242 -- 5.4 Multilevel Carrier-Based Modulation 243 -- 5.4.1 Phase-Shifted Carriers 243 -- 5.4.2 Level-Shifted Carriers 250 -- 5.5 Nearest-Level Control 252 -- 5.6 Submodule Energy Balancing Methods 256 -- 5.6.1 Submodule Sorting 256 -- 5.6.2 Predictive Sorting 259 -- 5.6.3 Tolerance Band Methods 263 -- 5.6.4 Individual Submodule-Capacitor-Voltage Control 269. 327 $a5.7 Summary 270 -- References 271 -- 6 Modeling and Simulation 272 -- 6.1 Introduction 272 -- 6.2 Leg-Level Averaged (LLA) Model 274 -- 6.3 Arm-Level Averaged (ALA) Model 275 -- 6.3.1 Arm-Level Averaged Model with Blocking Capability (ALA-BLK) 276 -- 6.4 Submodule-Level Averaged (SLA) Model 278 -- 6.4.1 Vectorized Simulation Models 279 -- 6.5 Submodule-Level Switched (SLS) Model 280 -- 6.5.1 Multiple Phase-Shifted Carrier (PSC) Simulation 281 -- 6.6 Summary 281 -- References 282 -- 7 Design and Optimization of MMC-HVDC Schemes for Offshore Wind-Power Plant Application 283 -- 7.1 Introduction 283 -- 7.2 The Influence of Regulatory Frameworks on the Development Strategies for Offshore HVDC Schemes 284 -- 7.2.1 UK's Regulatory Framework for Offshore Transmission Assets 285 -- 7.2.2 Germany's Regulatory Framework for Offshore Transmission Assets 286 -- 7.3 Impact of Regulatory Frameworks on the Functional Requirements and Design of Offshore HVDC Terminals 286 -- 7.4 Components of an Offshore MMC-HVDC Converter 287 -- 7.4.1 Offshore HVDC Converter Transformer 289 -- 7.4.2 Phase Reactors and DC Pole Reactors 290 -- 7.4.3 Converter Valve Hall 292 -- 7.4.4 Control and Protection Systems 293 -- 7.4.5 AC and DC Switchyards 293 -- 7.4.6 Auxiliary Systems 293 -- 7.5 Offshore Platform Concepts 294 -- 7.5.1 Accommodation Offshore 295 -- 7.6 Onshore HVDC Converter 295 -- 7.6.1 Onshore DC Choppers/Dynamic Brakers 296 -- 7.6.2 Inrush Current Limiter Resistors 297 -- 7.7 Recommended System Studies for the Development and Integration of an Offshore HVDC Link to a WPP 298 -- 7.7.1 Conceptual and Feasibility Studies with Steady-State Load Flow 299 -- 7.7.2 Short-Circuit Analysis 301 -- 7.7.3 Dynamic System Performance Analysis 301 -- 7.7.4 Transient Stability Analysis 301 -- 7.7.5 Harmonic Analysis 302 -- 7.7.6 Ferroresonance 302 -- 7.8 Summary 303 -- References 303 -- 8 MMC-HVDC Standards and Commissioning Procedures 305 -- 8.1 Introduction 305 -- 8.2 CIGRE and IEC Activities for the Standardization of MMC-HVDC Technology 306. 327 $a8.2.1 Hierarchy of Available and Applicable Codes, Standards and Best Practice Recommendations for MMC-HVDC Projects 309 -- 8.3 MMC-HVDC Commissioning and Factory and Site Acceptance Tests 309 -- 8.3.1 Pre-Commissioning 311 -- 8.3.2 Offsite Commissioning Tests or Factory Acceptance Tests 312 -- 8.3.3 Onsite Testing and Site Acceptance Tests 313 -- 8.3.4 Onsite Energizing Tests 314 -- 8.4 Summary 317 -- References 317 -- 9 Control and Protection of MMC-HVDC under AC and DC Network Fault Contingencies 318 -- 9.1 Introduction 318 -- 9.2 Two-Level VSC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 319 -- 9.2.1 Two-Level VSC-HVDC Fault Characteristics under DC Fault Contingency 321 -- 9.3 MMC-HVDC Fault Characteristics under Unbalanced AC Network Contingency 322 -- 9.3.1 Internal AC Bus Fault Conditions at the Secondary Side of the Converter Transformer 323 -- 9.4 DC Pole-to-Ground Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325 -- 9.4.1 DC Pole-to-Pole Short-Circuit Fault Characteristics of the Half-Bridge MMC-HVDC 325 -- 9.5 MMC-HVDC Component Failures 327 -- 9.5.1 Submodule Semiconductor Failures 327 -- 9.5.2 Submodule Capacitor Failure 328 -- 9.5.3 Phase Reactor Failure 329 -- 9.5.4 Converter Transformer Failure 329 -- 9.6 MMC-HVDC Protection Systems 329 -- 9.6.1 AC-Side Protections 331 -- 9.6.2 DC-Side Protections 331 -- 9.6.3 DC-Bus Undervoltage, Overvoltage Protection 331 -- 9.6.4 DC-Bus Voltage Unbalance Protection 332 -- 9.6.5 DC-Bus Overcurrent Protection 332 -- 9.6.6 DC Bus Differential Protection 332 -- 9.6.7 Valve and Submodule Protection 332 -- 9.6.8 Transformer Protection 333 -- 9.6.9 Primary Converter AC Breaker Failure Protection 333 -- 9.7 Summary 333 -- References 334 -- 10 MMC-HVDC Transmission Technology and MTDC Networks 336 -- 10.1 Introduction 336 -- 10.2 LCC-HVDC Transmission Technology 336 -- 10.3 Two-Level VSC-HVDC Transmission Technology 338 -- 10.3.1 Comparison of VSC-HVDC vs. LCC-HVDC Technology 338. 327 $a10.4 Modular Multilevel HVDC Transmission Technology 339 -- 10.4.1 Monopolar Asymmetric MMC-HVDC Scheme Configuration 340 -- 10.4.2 Symmetrical Monopole MMC-HVDC Scheme Configuration 340 -- 10.4.3 Bipolar HVDC Scheme Configuration 341 -- 10.4.4 Homopolar HVDC Scheme Configuration 342 -- 10.4.5 Back-to-Back HVDC Scheme Configuration 342 -- 10.5 The European HVDC Projects and MTDC Network Perspectives 343 -- 10.5.1 The North Sea Countries Offshore Grid Initiative (NSCOGI) 343 -- 10.5.2 Large Integration of Offshore Wind Farms and Creation of the Offshore DC Grid 344 -- 10.6 Multi-Terminal HVDC Configurations 345 -- 10.6.1 Series-Connected MTDC Network 346 -- 10.6.2 Parallel-Connected MTDC Network 346 -- 10.6.3 Meshed MTDC Networks 347 -- 10.7 DC Load Flow Control in MTDC Networks 348 -- 10.8 DC Grid Control Strategies 349 -- 10.8.1 Dynamic Voltage Control and Power Balancing in MTDC Networks 350 -- 10.8.2 Power and Voltage Droop Control Strategy 351 -- 10.8.3 Voltage Margin Control Method 352 -- 10.8.4 Dead-Band Droop Control 352 -- 10.8.5 Centralized and Distributed Voltage Control Strategies 354 -- 10.9 DC Fault Detection and Protection in MTDC Networks 355 -- 10.10 Fault-Detection Methods in MTDC 357 -- 10.10.1 Overcurrent and Voltage Detection Methods 357 -- 10.10.2 Distance Relay Protection 359 -- 10.10.3 Differential Line Protection 359 -- 10.10.4 Voltage Derivative Detection 359 -- 10.10.5 Traveling Wave Based Detection 360 -- 10.10.6 Frequency Domain Based Detection 361 -- 10.10.7 Wavelet Based Fault Detection 361 -- 10.11 DC Circuit Breaker Technologies 362 -- 10.11.1 DC Circuit Breaker with MOVs in Series with the DC Line 364 -- 10.11.2 DC Breakers with MOVs in Parallel with the DC Line 366 -- 10.12 Fault-Current Limiters 367 -- 10.12.1 Fault Current Limiting Reactors 367 -- 10.12.2 Solid-State Fault-Current Limiters 368 -- 10.12.3 Superconducting Fault-Current Limiters 369 -- 10.13 The Influence of Grounding Strategy on Fault Currents 369 -- 10.14 DC Supergrids of the Future 370. 327 $a10.15 Summary 371 -- References 371 -- Index 373. 330 $aDesign, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: . Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland.. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology.. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore.. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals.. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology. 606 $aConvertidors de corrent elèctric$2lemac 606 $aEnergia elèctrica$xTransmissió$xCorrent continu$2lemac 606 $aElectric power transmission$xDirect current$xEquipment and supplies 606 $aElectric current converters$xAutomatic control 606 $aElectric current converters$xDesign and construction 615 7$aConvertidors de corrent elèctric 615 7$aEnergia elèctrica$xTransmissió$xCorrent continu 615 0$aElectric power transmission$xDirect current$xEquipment and supplies. 615 0$aElectric current converters$xAutomatic control. 615 0$aElectric current converters$xDesign and construction. 676 $a621.31/7 700 $aSharifabadi$b Kamran$f1963-$0872874 702 $aHarnefors$b Lennart$f1968- 702 $aNee$b Hans Peter$f1963- 702 $aNorrga$b Staffan$f1968- 702 $aTeodorescu$b Remus 801 0$bCaBNVSL 801 1$bCaBNVSL 801 2$bCaBNVSL 906 $aBOOK 912 $a9910134875803321 996 $aDesign, control, and application of modular multilevel converters for HVDC transmission systems$91948632 997 $aUNINA LEADER 03397nam 22006495 450 001 9910903790403321 005 20250807145725.0 010 $a9789819960835 010 $a9819960835 024 7 $a10.1007/978-981-99-6083-5 035 $a(CKB)36443027100041 035 $a(MiAaPQ)EBC31749010 035 $a(Au-PeEL)EBL31749010 035 $a(DE-He213)978-981-99-6083-5 035 $a(EXLCZ)9936443027100041 100 $a20241031d2024 u| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 14$aThe Control Principle of Wind Power Generation System /$fby Hongwei Ma, Yongdong Li, Lie Xu, Jianyun Chai 205 $a1st ed. 2024. 210 1$aSingapore :$cSpringer Nature Singapore :$cImprint: Springer,$d2024. 215 $a1 online resource (359 pages) 311 08$a9789819960828 311 08$a9819960827 327 $aChapter 1 Introduction -- Chapter 2 Mathematical Models and Modelling Methods for the DFIG-based Wind Power System -- Chapter 3 Control Strategies for the DFIG-based Wind Power System under Ideal Grid Conditions -- Chapter 4 Operational Characteristics of the DFIG-based Wind Power System under Non-ideal Grid Conditions -- Chapter 5 Low-voltage Ride-through Technologies for the DFIG-based Wind Power System. 330 $aThe book focuses on wind power generation systems. The control strategies have been addressed not only on ideal grid conditions but also on non-ideal grid conditions, which are more common in practice, such as kinds of asymmetrical grid conditions and weak grid conditions. This is achieved by providing in-depth study on a number of major topics such as mathematical models, modeling methods, dynamic characteristics on ideal grid condition and non-ideal grid conditions, advanced control strategies, and novel topologies. The comprehensive and systematic elaboration of wind power systems by a large number of original simulations and experimental results from the authors? research group is one of the major features of the book, which is particularly suited for readers who are interested in learning practical solutions to wind power systems. The book benefits researchers, engineers, graduate students, and senior undergraduate students in fields of electrical engineering, power electronics, wind power generation, etc. 606 $aAutomatic control 606 $aRobotics 606 $aAutomation 606 $aElectric power production 606 $aElectric power distribution 606 $aControl, Robotics, Automation 606 $aElectrical Power Engineering 606 $aEnergy Grids and Networks 615 0$aAutomatic control. 615 0$aRobotics. 615 0$aAutomation. 615 0$aElectric power production. 615 0$aElectric power distribution. 615 14$aControl, Robotics, Automation. 615 24$aElectrical Power Engineering. 615 24$aEnergy Grids and Networks. 676 $a621.312136 700 $aMa$b Hongwei$01772438 701 $aLi$b Yongdong$01772439 701 $aXu$b Lie$01772440 701 $aChai$b Jianyun$01772441 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910903790403321 996 $aThe Control Principle of Wind Power Generation System$94273154 997 $aUNINA