LEADER 02052nam 2200481 450 001 9910270878703321 005 20230809233544.0 010 $a1-119-30104-1 010 $a1-119-30105-X 010 $a1-119-30106-8 035 $a(CKB)4330000000010071 035 $a(MiAaPQ)EBC4850322 035 $a(DLC) 2017007223 035 $a(Au-PeEL)EBL4850322 035 $a(CaPaEBR)ebr11379852 035 $a(OCoLC)986172609 035 $a(EXLCZ)994330000000010071 100 $a20170512h20172017 uy 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aSpline collocation methods for partial differential equations $ewith applications in R /$fWilliam E. Schiesser 210 1$aHoboken, New Jersey :$cWiley,$d2017. 210 4$dİ2017 215 $a1 online resource (551 pages) $cillustrations, tables 311 $a1-119-30103-3 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aOne-dimensional PDEs -- Multidimensional PDEs -- Navier-Stokes, Burgers equations -- Korteweg-deVries equation -- Maxwell equations -- Poisson-Nernst-Planck equations -- Fokker-Planck equation -- Fisher-Kolmogorov equation -- Klein-Gordon equation -- Boussinesq equation -- Cahn-Hilliard equation -- Camassa-Holm equation -- Burgers-Huxley equation -- Gierer-Meinhardt equations -- Keller-Segel equations -- Fitzhugh-Nagumo equations -- Euler-Poisson-Darboux equation -- Kuramoto-Sivashinsky equation -- Einstein-Maxwell equations. 606 $aDifferential equations, Partial$xMathematical models 606 $aSpline theory 615 0$aDifferential equations, Partial$xMathematical models. 615 0$aSpline theory. 676 $a515/.353 700 $aSchiesser$b W. E.$0506133 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910270878703321 996 $aSpline collocation methods for partial differential equations$91992332 997 $aUNINA