LEADER 03953nam 22008775 450 001 9910257427803321 005 20250729100244.0 010 $a3-540-46550-2 024 7 $a10.1007/3-540-46550-2 035 $a(CKB)1000000000778040 035 $a(SSID)ssj0000322949 035 $a(PQKBManifestationID)12131469 035 $a(PQKBTitleCode)TC0000322949 035 $a(PQKBWorkID)10289921 035 $a(PQKB)11653061 035 $a(DE-He213)978-3-540-46550-8 035 $a(MiAaPQ)EBC6284037 035 $a(MiAaPQ)EBC5595151 035 $a(Au-PeEL)EBL5595151 035 $a(OCoLC)1076250735 035 $a(PPN)155224573 035 $a(EXLCZ)991000000000778040 100 $a20121227d2000 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aEquivariant Cohomology and Localization of Path Integrals /$fby Richard J. Szabo 205 $a1st ed. 2000. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2000. 215 $a1 online resource (XI, 315 p.) 225 1 $aLecture Notes in Physics Monographs ;$v63 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-67126-9 320 $aIncludes bibliographical references. 327 $aEquivariant Cohomology and the Localization Principle -- Finite-Dimensional Localization Theory for Dynamical Systems -- Quantum Localization Theory for Phase Space Path Integrals -- Equivariant Localization on Simply Connected Phase Spaces: Applications to Quantum Mechanics, Group Theory and Spin Systems -- Equivariant Localization on Multiply Connected Phase Spaces: Applications to Homology and Modular Representations -- Beyond the Semi-Classical Approximation -- Equivariant Localization in Cohomological Field Theory -- Appendix A: BRST Quantization -- Appendix B: Other Models of Equivariant Cohomology. 330 $aThis book, addressing both researchers and graduate students, reviews equivariant localization techniques for the evaluation of Feynman path integrals. The author gives the relevant mathematical background in some detail, showing at the same time how localization ideas are related to classical integrability. The text explores the symmetries inherent in localizable models for assessing the applicability of localization formulae. Various applications from physics and mathematics are presented. 410 0$aLecture Notes in Physics Monographs ;$v63 606 $aParticles (Nuclear physics) 606 $aQuantum field theory 606 $aAlgebraic topology 606 $aNuclear physics 606 $aMathematical physics 606 $aTopology 606 $aGlobal analysis (Mathematics) 606 $aManifolds (Mathematics) 606 $aElementary Particles, Quantum Field Theory 606 $aAlgebraic Topology 606 $aNuclear and Particle Physics 606 $aMathematical Methods in Physics 606 $aTopology 606 $aGlobal Analysis and Analysis on Manifolds 615 0$aParticles (Nuclear physics) 615 0$aQuantum field theory. 615 0$aAlgebraic topology. 615 0$aNuclear physics. 615 0$aMathematical physics. 615 0$aTopology. 615 0$aGlobal analysis (Mathematics) 615 0$aManifolds (Mathematics) 615 14$aElementary Particles, Quantum Field Theory. 615 24$aAlgebraic Topology. 615 24$aNuclear and Particle Physics. 615 24$aMathematical Methods in Physics. 615 24$aTopology. 615 24$aGlobal Analysis and Analysis on Manifolds. 676 $a514.23 700 $aSzabo$b Richard J$4aut$4http://id.loc.gov/vocabulary/relators/aut$049034 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910257427803321 996 $aEquivariant cohomology and localization of path integrals$9339231 997 $aUNINA