LEADER 03438oam 2200613 450 001 9910257407703321 005 20220722032605.0 010 $a3-540-70690-9 024 7 $a10.1007/978-3-540-70690-8 035 $a(CKB)1000000000778152 035 $a(SSID)ssj0000324679 035 $a(PQKBManifestationID)12097579 035 $a(PQKBTitleCode)TC0000324679 035 $a(PQKBWorkID)10314292 035 $a(PQKB)10025709 035 $a(DE-He213)978-3-540-70690-8 035 $a(MiAaPQ)EBC3088265 035 $a(MiAaPQ)EBC6486368 035 $a(PPN)155198645 035 $a(EXLCZ)991000000000778152 100 $a20210716d1997 uy 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 12$aA mathematical introduction to conformal field theory $ebased on a series of lectures given at the Mathematisches Institut der Universität Hamburg /$fMartin Schottenloher 205 $a1st ed. 1997. 210 1$aBerlin ;$aHeidelberg :$cSpringer,$d[1997] 210 4$d©1997 215 $a1 online resource (VIII, 144 p.) 225 1 $aLecture Notes in Physics. New series m, Monographs 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-61753-1 320 $aIncludes bibliographical references and index. 327 $aMathematical Preliminaries -- Conformal Transformations and Conformal Killing Fields -- The Conformal Group -- Central Extensions of Groups -- Central Extensions of Lie Algebras and Bargmann?s Theorem -- The Virasoro Algebra -- First Steps Towards Conformal Field Theory -- Representation Theory of the Virasoro Algebra -- Projective Representations of Diff+ ( ) and More -- String Theory as a Conformal Field Theory -- Foundations of Two-Dimensional Conformal Quantum Field Theory -- Mathematical Aspects of the Verlinde Formula. 330 $aThe first part of this book gives a detailed, self-contained and mathematically rigorous exposition of classical conformal symmetry in n dimensions and its quantization in two dimensions. In particular, the conformal groups are determined and the appearence of the Virasoro algebra in the context of the quantization of two-dimensional conformal symmetry is explained via the classification of central extensions of Lie algebras and groups. The second part surveys some more advanced topics of conformal field theory, such as the representation theory of the Virasoro algebra, conformal symmetry within string theory, an axiomatic approach to Euclidean conformally covariant quantum field theory and a mathematical interpretation of the Verlinde formula in the context of moduli spaces of holomorphic vector bundles on a Riemann surface. This book is an important text for researchers and graduate students. 410 0$aLecture notes in physics.$nNew series m,$pMonographs. 606 $aConformal invariants 606 $aQuantum field theory 606 $aMathematical physics 615 0$aConformal invariants. 615 0$aQuantum field theory. 615 0$aMathematical physics. 676 $a530.143 700 $aSchottenloher$b Martin$f1944-$061173 712 02$aUniversita?t Hamburg.$bMathematisches Seminar. 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bUtOrBLW 906 $aBOOK 912 $a9910257407703321 996 $aMathematical Introduction to Conformal Field Theory$9375674 997 $aUNINA