LEADER 03671nam 22007695 450 001 9910257402203321 005 20250801064757.0 010 $a3-540-49636-X 024 7 $a10.1007/978-3-540-49636-6 035 $a(CKB)1000000000777992 035 $a(SSID)ssj0000320974 035 $a(PQKBManifestationID)12115891 035 $a(PQKBTitleCode)TC0000320974 035 $a(PQKBWorkID)10262781 035 $a(PQKB)11366871 035 $a(DE-He213)978-3-540-49636-6 035 $a(MiAaPQ)EBC3088887 035 $a(MiAaPQ)EBC6485943 035 $a(PPN)155179578 035 $a(Au-PeEL)EBL6485943 035 $a(OCoLC)1255224015 035 $a(EXLCZ)991000000000777992 100 $a20121227d1997 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aAdvances in Doublet Mechanics /$fedited by Mauro Ferrari, Vladimir T. Granik, Ali Imam, Joseph C. Nadeau 205 $a1st ed. 1997. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1997. 215 $a1 online resource (XVI, 216 p. 8 illus.) 225 1 $aLecture Notes in Physics Monographs ;$v45 300 $aBibliographic Level Mode of Issuance: Monograph 311 08$a3-540-62061-3 320 $aIncludes bibliographical references. 327 $ato Doublet Mechanics -- Doublet Thermomechanics -- Multi-component Constitutive Equations -- Comparison with Other Theories -- Multi-scale, Plane Waves -- Reflection of Plane Waves -- Surface Waves ? Difference Equations -- Isotropic Plane Elastostatics -- Multi-scale Solutions -- A New Direction: Nanotubes. 330 $aThe recently proposed, fully multi-scale theory of doublet mechanics offers unprecented opportunities to reconcile the discrete and continuum representations of solids while maintaining a simple analytical format and full compatibility with lattice dynamics and continuum mechanics. In this monograph, a self-contained account of the state of the art in doublet mechanics is presented. Novel results in the elastodynamics of microstructured media are reported, including the identification of a new class of dispersive surface waves, and the presentation of methods for the experimental determination of the essential microstructural parameters. The relationships between doublet mechanics, lattice dynamics, and continuum theories are examined, leading to the identification of the subject areas in which the use of doublet mechanics is most advantageous. These areas include the analysis of domains as diverse as micro-electro-mechanical systems (MEMS), granular and particulate media, nanotubes, and peptide arrays. 410 0$aLecture Notes in Physics Monographs ;$v45 606 $aMechanics 606 $aCondensed matter 606 $aBiophysics 606 $aMaterials$xAnalysis 606 $aGeophysics 606 $aClassical Mechanics 606 $aPhase Transitions and Multiphase Systems 606 $aBiophysics 606 $aCharacterization and Analytical Technique 606 $aGeophysics 615 0$aMechanics. 615 0$aCondensed matter. 615 0$aBiophysics. 615 0$aMaterials$xAnalysis. 615 0$aGeophysics. 615 14$aClassical Mechanics. 615 24$aPhase Transitions and Multiphase Systems. 615 24$aBiophysics. 615 24$aCharacterization and Analytical Technique. 615 24$aGeophysics. 676 $a530.41 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910257402203321 996 $aAdvances in doublet mechanics$91491067 997 $aUNINA