LEADER 04159nam 22007215 450 001 9910257383003321 005 20200701130139.0 010 $a3-540-69747-0 024 7 $a10.1007/BFb0106873 035 $a(CKB)1000000000778042 035 $a(SSID)ssj0000323118 035 $a(PQKBManifestationID)12114799 035 $a(PQKBTitleCode)TC0000323118 035 $a(PQKBWorkID)10296247 035 $a(PQKB)11031494 035 $a(DE-He213)978-3-540-69747-3 035 $a(PPN)155193651 035 $a(EXLCZ)991000000000778042 100 $a20121227d1998 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aField Theoretical Tools for Polymer and Particle Physics$b[electronic resource] /$fedited by Hildegard Meyer-Ortmanns, Andreas Klümper 205 $a1st ed. 1998. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1998. 215 $a1 online resource (XVI, 260 p.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v508 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-64308-7 327 $aRandom walks in polymer physics -- Random walks in field theory -- Polymer expansion in particle physics -- Polymers, spin models and field theory -- Reaction-diffusion mechanisms and quantum spin systems -- Bosonization in particle physics -- Hadronization in particle physics -- The hybrid monte carlo algorithm for quantum chromodynamics -- The hybrid monte carlo method for polymer chains -- Simulations of toy proteins -- Two lectures on phase mixing: Nucleation and symmetry restoration -- Neural networks and confidence limit estimates -- The gross-neveu model and QCDs chiral phase transition -- The TBA, the gross-neveu model, and polyacetylene -- Solitons in polyacetylene. 330 $aThe book is written for advanced graduate students. The topics have been selected to present methods and models that have applications in both particle physics and polymer physics. The lectures may serve as a guide through more recent research activities and illustrate the applicability of joint methods in different contexts. The book deals with analytic tools (e.g. random walk models, polymer expansion), numerical tools (e.g. Langevin dynamics), and common models (the three-dimensional Gross-Neveu-Model). 410 0$aLecture Notes in Physics,$x0075-8450 ;$v508 606 $aAlgebra 606 $aChemical engineering 606 $aPhysics 606 $aElementary particles (Physics) 606 $aQuantum field theory 606 $aAlgebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11000 606 $aIndustrial Chemistry/Chemical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/C27000 606 $aPhysics, general$3https://scigraph.springernature.com/ontologies/product-market-codes/P00002 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aElementary Particles, Quantum Field Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P23029 615 0$aAlgebra. 615 0$aChemical engineering. 615 0$aPhysics. 615 0$aElementary particles (Physics). 615 0$aQuantum field theory. 615 14$aAlgebra. 615 24$aIndustrial Chemistry/Chemical Engineering. 615 24$aPhysics, general. 615 24$aMathematical Methods in Physics. 615 24$aNumerical and Computational Physics, Simulation. 615 24$aElementary Particles, Quantum Field Theory. 676 $a530.4/13 702 $aMeyer-Ortmanns$b Hildegard$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aKlümper$b Andreas$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910257383003321 996 $aField Theoretical Tools for Polymer and Particle Physics$92526078 997 $aUNINA