LEADER 03439nam 22006735 450 001 9910257381703321 005 20200629160909.0 010 $a3-540-45953-7 024 7 $a10.1007/3-540-50213-0 035 $a(CKB)1000000000233313 035 $a(SSID)ssj0000326009 035 $a(PQKBManifestationID)12097368 035 $a(PQKBTitleCode)TC0000326009 035 $a(PQKBWorkID)10264867 035 $a(PQKB)11787138 035 $a(DE-He213)978-3-540-45953-8 035 $a(PPN)155218727 035 $a(EXLCZ)991000000000233313 100 $a20121227d1988 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$a?QED A Proof of Renormalizability?$b[electronic resource] /$fby Joel S. Feldman, Thomas R. Hurd, Lon Rosen, Jill D. Wright 205 $a1st ed. 1988. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d1988. 215 $a1 online resource (VII, 176 p.) 225 1 $aLecture Notes in Physics,$x0075-8450 ;$v312 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-540-50213-0 327 $aThe GN tree expansion and UV-renormalization -- Loop regularization -- Ward identities -- The limits ? ? ? and U ? ? -- The tree expansion in the infrared regime -- QED without cutoffs -- Local borel summability. 330 $aThe authors give a detailed and pedagogically well written proof of the renormalizability of quantum electrodynamics in four dimensions. The proof is based on the free expansion of Gallavotti and Nicoḷ and is mathematically rigorous as well as impressively general. It applies to rather general models of quantum field theory including models with infrared or ultraviolet singularities, as shown in this monograph for the first time. Also discussed are the loop regularization for renormalized graphs and the Ward identities. The authors also establish that in QED in four dimensions only gauge invariant counterterms are required. This seems to be the first proof which will be accessible not only to the expert but also to the student. 410 0$aLecture Notes in Physics,$x0075-8450 ;$v312 606 $aQuantum physics 606 $aQuantum computers 606 $aSpintronics 606 $aMathematical analysis 606 $aAnalysis (Mathematics) 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aAnalysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12007 615 0$aQuantum physics. 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aMathematical analysis. 615 0$aAnalysis (Mathematics). 615 14$aQuantum Physics. 615 24$aQuantum Information Technology, Spintronics. 615 24$aAnalysis. 676 $a530.12 700 $aFeldman$b Joel S$4aut$4http://id.loc.gov/vocabulary/relators/aut$051515 702 $aHurd$b Thomas R$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aRosen$b Lon$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aWright$b Jill D$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910257381703321 996 $aQED$9336301 997 $aUNINA