LEADER 00993nam0-22003371i-450 001 990004814220403321 005 20190307145111.0 035 $a000481422 035 $aFED01000481422 035 $a(Aleph)000481422FED01 035 $a000481422 100 $a19990604d1970----km-y0itay50------ba 101 0 $ager 102 $aDE 105 $ay-------001yy 200 1 $a<>Sprache als Thema$eUntersuchungen zu Fontanes Gesellschaftsromanen$fvon Ingrid Mittenzwei 210 $aBerlin [etc.]$cGehlen [etc.]$dc1970 215 $a200 p.$d23 cm 225 1 $aFrankfurter Beiträge zur Germanistik$v12 610 0 $aFontane, Theodor$aOpere 676 $a833.8$v22$zita 700 1$aMittenzwei,$bIngrid$0192495 801 0$aIT$bUNINA$gREICAT$2UNIMARC 901 $aBK 912 $a990004814220403321 952 $aALPHA 3868$bFil. Mod. 34172$fFLFBC 952 $aFondo Mango 26$fFSPBC 959 $aFLFBC 959 $aFSPBC 996 $aSprache als Thema$9518751 997 $aUNINA LEADER 02184nam 2200529 450 001 9910702746903321 005 20141215114222.0 035 $a(CKB)5470000002430730 035 $a(OCoLC)898128481 035 $a(EXLCZ)995470000002430730 100 $a20141215j201410 ua 0 101 0 $aeng 135 $aurmn||||a|||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aMaterial property correlations $ecomparisons between FRAPCON-3.5, FRAPTRAN-1.5, and MATRO /$fprepared by W.G. Luscher and K.J. Geelhood 210 1$aWashington, DC :$cUnited States Nuclear Regulatory Commission, Office of Nuclear Regulatory Research,$dOctober 2014. 215 $a1 online resource (153 unnumbered pages) $ccolor illustrations 300 $aTitle from title screen (viewed on Dec. 11, 2014). 300 $a"Manuscript completed: May 2014 ; Date published: October 2014." 300 $a"NUREG/CR-7024, Rev. 1." 300 $a"PNNL-194-17, Rev. 1." 320 $aIncludes bibliographical references. 517 $aMaterial property correlations 606 $aNuclear power plants$xAccidents$xComputer simulation 606 $aLight water reactors$xAccidents$xComputer simulation 606 $aNuclear reactors$xMaterials 606 $aNuclear fuel rods$xData processing 606 $aNuclear fuel claddings$xData processing 606 $aNuclear fuel rods$xComputer simulation 615 0$aNuclear power plants$xAccidents$xComputer simulation. 615 0$aLight water reactors$xAccidents$xComputer simulation. 615 0$aNuclear reactors$xMaterials. 615 0$aNuclear fuel rods$xData processing. 615 0$aNuclear fuel claddings$xData processing. 615 0$aNuclear fuel rods$xComputer simulation. 700 $aLuscher$b W. G$g(Walter G.),$f1979-$01390209 702 $aGeelhood$b K. J. 712 02$aU.S. Nuclear Regulatory Commission.$bOffice of Nuclear Regulatory Research, 712 02$aPacific Northwest National Laboratory (U.S.) 801 0$bGPO 801 1$bGPO 906 $aBOOK 912 $a9910702746903321 996 $aMaterial property correlations$93457516 997 $aUNINA LEADER 05449nam 22006495 450 001 9910257381503321 005 20200706142422.0 010 $a3-319-45282-7 024 7 $a10.1007/978-3-319-45282-1 035 $a(CKB)3850000000027331 035 $a(DE-He213)978-3-319-45282-1 035 $a(MiAaPQ)EBC6283768 035 $a(MiAaPQ)EBC5578517 035 $a(Au-PeEL)EBL5578517 035 $a(OCoLC)983830457 035 $a(PPN)200509675 035 $a(EXLCZ)993850000000027331 100 $a20170418d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeometric Aspects of Functional Analysis $eIsrael Seminar (GAFA) 2014?2016 /$fedited by Bo'az Klartag, Emanuel Milman 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XII, 366 p. 2 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2169 311 $a3-319-45281-9 320 $aIncludes bibliographical references. 327 $aAlesker, S.: On repeated sequential closures of constructible functions in valuations -- Ben-Efraim L., Milman, V., Segal, A.: Orbit point of view on some results of asymp-totic theory; Orbit type and cotype -- Bobkov, S. G., Nayar, P., Tetali, P.: Concentration Properties of Restricted Measures with Applications to Non-Lipschitz Functions -- Bourgain, J.:On random walks in large compact Lie groups -- Bourgain, J.: On a problem of Farrell and Vershynin in random matrix theory. -- Colesanti, A., Lombardi, N.: Valutations on the space of quasi-concave functions -- Dafnis, N., Paouris, G.: An inequality for moments of log-concave functions on Gaus-sian random vectors -- Friedland, O., Yomdin, Y.:(s; p)-valent functions -- Gluskin, E. D., Ostrover, Y.: A remark on projections of the rotated cube to complex lines -- Guedon, O., Hinrichs, A., Litvak, A. E., Prochno, J.: On the expectation of operatornorms of random matrices -- Haviv, I., Regev, O.: The Restricted Isometry Property of Subsampled Fourier Ma-trices -- Huang, H., Wei, F.: Upper bound for the Dvoretzky dimension in Milman-Schechtman theorem -- Klartag, B.: Super-Gaussian directions of random vectors -- Koldobsky, A., Pajor, A.: A remark on measures of sections of Lp-balls -- Kolesnikov, A. V., Milman, E.: Sharp Poincare-type inequality for the Gaussian mea-sure on the boundary of convex sets -- Konig, H., Milman, V.: Rigidity of the chain rule and nearly submultiplicative functions -- Lata la, R., Matlak, D.: Royen's proof of the Gaussian correlation inequality -- Liaw, C., Mehrabian, A., Plan, Y., Vershynin, R.: A simple tool for bounding the deviation of random matrices on geometric sets -- Mendelson, S.: On multiplier processes under weak moment assumptions -- Milman, V., Rotem, L.: Characterizing the radial sum for star bodies -- Oleskiewicz, K.: On mimicking Rademacher sums in tail spaces -- Rossi, A., Salani, P.: Stability for Borell-Brascamp-Lieb inequalities.pan>. 330 $aAs in the previous Seminar Notes, the current volume reflects general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. A classical theme in the Local Theory of Banach Spaces which is well represented in this volume is the identification of lower-dimensional structures in high-dimensional objects. More recent applications of high-dimensionality are manifested by contributions in Random Matrix Theory, Concentration of Measure and Empirical Processes. Naturally, the Gaussian measure plays a central role in many of these topics, and is also studied in this volume; in particular, the recent breakthrough proof of the Gaussian Correlation Conjecture is revisited. The interplay of the theory with Harmonic and Spectral Analysis is also well apparent in several contributions. The classical relation to both the primal and dual Brunn-Minkowski theories is also well represented, and related algebraic structures pertaining to valuations and valent functions are discussed. All contributions are original research papers and were subject to the usual refereeing standards. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2169 606 $aFunctional analysis 606 $aConvex geometry 606 $aDiscrete geometry 606 $aProbabilities 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 606 $aConvex and Discrete Geometry$3https://scigraph.springernature.com/ontologies/product-market-codes/M21014 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aFunctional analysis. 615 0$aConvex geometry. 615 0$aDiscrete geometry. 615 0$aProbabilities. 615 14$aFunctional Analysis. 615 24$aConvex and Discrete Geometry. 615 24$aProbability Theory and Stochastic Processes. 676 $a515.7 702 $aKlartag$b Bo'az$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aMilman$b Emanuel$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910257381503321 996 $aGeometric aspects of functional analysis$980193 997 $aUNINA