LEADER 04021nam 22007575 450 001 9910257380103321 005 20200630020454.0 010 $a3-319-51296-X 024 7 $a10.1007/978-3-319-51296-9 035 $a(CKB)4340000000062305 035 $a(DE-He213)978-3-319-51296-9 035 $a(MiAaPQ)EBC6295540 035 $a(MiAaPQ)EBC5578832 035 $a(Au-PeEL)EBL5578832 035 $a(OCoLC)987489830 035 $a(PPN)201471108 035 $a(EXLCZ)994340000000062305 100 $a20170513d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aSelberg Zeta Functions and Transfer Operators $eAn Experimental Approach to Singular Perturbations /$fby Markus Szymon Fraczek 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XV, 354 p. 71 illus., 43 illus. in color.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2139 311 $a3-319-51294-3 330 $aThis book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spaces. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2139 606 $aNumber theory 606 $aComputer mathematics 606 $aApproximation theory 606 $aFunctions of complex variables 606 $aSpecial functions 606 $aDynamics 606 $aErgodic theory 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 606 $aComputational Mathematics and Numerical Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M1400X 606 $aApproximations and Expansions$3https://scigraph.springernature.com/ontologies/product-market-codes/M12023 606 $aFunctions of a Complex Variable$3https://scigraph.springernature.com/ontologies/product-market-codes/M12074 606 $aSpecial Functions$3https://scigraph.springernature.com/ontologies/product-market-codes/M1221X 606 $aDynamical Systems and Ergodic Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M1204X 615 0$aNumber theory. 615 0$aComputer mathematics. 615 0$aApproximation theory. 615 0$aFunctions of complex variables. 615 0$aSpecial functions. 615 0$aDynamics. 615 0$aErgodic theory. 615 14$aNumber Theory. 615 24$aComputational Mathematics and Numerical Analysis. 615 24$aApproximations and Expansions. 615 24$aFunctions of a Complex Variable. 615 24$aSpecial Functions. 615 24$aDynamical Systems and Ergodic Theory. 676 $a515.56 700 $aFraczek$b Markus Szymon$4aut$4http://id.loc.gov/vocabulary/relators/aut$0742221 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910257380103321 996 $aSelberg Zeta functions and transfer operators$91474428 997 $aUNINA