LEADER 03628nam 22006975 450 001 9910257378903321 005 20240919095618.0 010 $a9783319636306 010 $a3-319-63630-8 024 7 $a10.1007/978-3-319-63630-6 035 $a(CKB)4100000000587416 035 $a(DE-He213)978-3-319-63630-6 035 $a(MiAaPQ)EBC6299369 035 $a(MiAaPQ)EBC5596509 035 $a(Au-PeEL)EBL5596509 035 $a(OCoLC)1004663268 035 $a(PPN)204533260 035 $a(EXLCZ)994100000000587416 100 $a20170912d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aRamanujan summation of divergent series /$fby Bernard Candelpergher 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing, AG$d2017. 215 $a1 online resource (XXIII, 195 p. 7 illus.) 225 1 $aLecture Notes in Mathematics,$x0075-8434 ;$v2185 311 1 $a9783319636290 311 1 $a3-319-63629-4 327 $aIntroduction: The Summation of Series --  1 Ramanujan Summation -- 3 Properties of the Ramanujan Summation -- 3 Dependence on a Parameter -- 4 Transformation Formulas -- 5 An Algebraic View on the Summation of Series -- 6 Appendix -- 7 Bibliography -- 8 Chapter VI of the Second Ramanujan's Notebook. 330 $aThe aim of this monograph is to give a detailed exposition of the summation method that Ramanujan uses in Chapter VI of his second Notebook. This method, presented by Ramanujan as an application of the Euler-MacLaurin formula, is here extended using a difference equation in a space of analytic functions. This provides simple proofs of theorems on the summation of some divergent series. Several examples and applications are given. For numerical evaluation, a formula in terms of convergent series is provided by the use of Newton interpolation. The relation with other summation processes such as those of Borel and Euler is also studied. Finally, in the last chapter, a purely algebraic theory is developed that unifies all these summation processes. This monograph is aimed at graduate students and researchers who have a basic knowledge of analytic function theory. 410 0$aLecture Notes in Mathematics,$x0075-8434 ;$v2185 606 $aSequences (Mathematics) 606 $aFunctions of complex variables 606 $aNumber theory 606 $aSuccessions (Matemātica)$2lemac 606 $aNombres, Teoria de$2lemac 606 $aFuncions de variables complexes$2lemac 606 $aSequences, Series, Summability$3https://scigraph.springernature.com/ontologies/product-market-codes/M1218X 606 $aFunctions of a Complex Variable$3https://scigraph.springernature.com/ontologies/product-market-codes/M12074 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aSequences (Mathematics) 615 0$aFunctions of complex variables. 615 0$aNumber theory. 615 7$aSuccessions (Matemātica) 615 7$aNombres, Teoria de. 615 7$aFuncions de variables complexes 615 14$aSequences, Series, Summability. 615 24$aFunctions of a Complex Variable. 615 24$aNumber Theory. 676 $a517.21 700 $aCandelpergher$b Bernard$4aut$4http://id.loc.gov/vocabulary/relators/aut$0739987 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910257378903321 996 $aRamanujan summation of divergent series$91466442 997 $aUNINA