LEADER 05672nam 22007215 450 001 9910254982703321 005 20240919130357.0 010 $a3-319-29659-0 024 7 $a10.1007/978-3-319-29659-3 035 $a(CKB)3710000000627502 035 $a(SSID)ssj0001656821 035 $a(PQKBManifestationID)16442271 035 $a(PQKBTitleCode)TC0001656821 035 $a(PQKBWorkID)14988136 035 $a(PQKB)10979735 035 $a(DE-He213)978-3-319-29659-3 035 $a(MiAaPQ)EBC6310810 035 $a(MiAaPQ)EBC5589186 035 $a(Au-PeEL)EBL5589186 035 $a(OCoLC)946011635 035 $a(PPN)192774522 035 $a(EXLCZ)993710000000627502 100 $a20160328d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aRecommender Systems $eThe Textbook /$fby Charu C. Aggarwal 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XXI, 498 p. 79 illus., 18 illus. in color.) 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-29657-4 320 $aIncludes bibliographical references & index. 327 $aAn Introduction to Recommender Systems -- Neighborhood-Based Collaborative Filtering -- Model-Based Collaborative Filtering -- Content-Based Recommender Systems -- Knowledge-Based Recommender Systems -- Ensemble-Based and Hybrid Recommender Systems -- Evaluating Recommender Systems -- Context-Sensitive Recommender Systems -- Time- and Location-Sensitive Recommender Systems -- Structural Recommendations in Networks -- Social and Trust-Centric Recommender Systems -- Attack-Resistant Recommender Systems -- Advanced Topics in Recommender Systems. 330 $aThis book comprehensively covers the topic of recommender systems, which provide personalized recommendations of products or services to users based on their previous searches or purchases. Recommender system methods have been adapted to diverse applications including query log mining, social networking, news recommendations, and computational advertising. This book synthesizes both fundamental and advanced topics of a research area that has now reached maturity.  The chapters of this book  are organized into three categories: - Algorithms and evaluation:  These chapters discuss the fundamental algorithms in recommender systems, including collaborative filtering methods, content-based methods, knowledge-based methods, ensemble-based methods, and evaluation. - Recommendations in specific domains and contexts: the context of a recommendation can be viewed as important side information that affects the recommendation goals. Different types of context such as temporal data, spatial data, social data, tagging data, and trustworthiness are explored. - Advanced topics and applications:  Various robustness aspects of recommender systems, such as shilling systems, attack models, and their defenses are discussed. In addition, recent topics, such as learning to rank, multi-armed bandits, group systems, multi-criteria systems, and active learning systems, are introduced together with applications. Although this book primarily serves as a textbook, it will also appeal to industrial practitioners and researchers due to its focus on applications and references. Numerous examples and exercises have been provided, and a solution manual is available for instructors. About the Author: Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T.J. Watson Research Center in Yorktown Heights, New York. He completed his B.S. from IIT Kanpur in 1993 and his Ph.D. from the Massachusetts Institute of Technology in 1996. He has published more than 300 papers in refereed conferences and journals, and has applied for or been granted more than 80 patents. He is author or editor of 15 books, including a textbook on data mining and a comprehensive book on outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several internal and external awards, including the EDBT Test-of-Time Award (2014) and the IEEE ICDM Research Contributions Award (2015). He has also served as program or general chair of many major conferences in data mining. He is a fellow of the SIAM, ACM, and the IEEE, for ?contributions to knowledge discovery and data mining algorithms.?. 606 $aData mining 606 $aArtificial intelligence 606 $aData Mining and Knowledge Discovery$3https://scigraph.springernature.com/ontologies/product-market-codes/I18030 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aInformàtica$2thub 606 $aSistemes d'informació$2thub 606 $aDifusió selectiva de la informació$2thub 606 $aIntel·ligència artificial$2thub 608 $aLlibres electrònics$2thub 615 0$aData mining. 615 0$aArtificial intelligence. 615 14$aData Mining and Knowledge Discovery. 615 24$aArtificial Intelligence. 615 7$aInformàtica. 615 7$aSistemes d'informació 615 7$aDifusió selectiva de la informació 615 7$aIntel·ligència artificial. 676 $a005.56 700 $aAggarwal$b Charu C$4aut$4http://id.loc.gov/vocabulary/relators/aut$0518673 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254982703321 996 $aRecommender Systems$92260433 997 $aUNINA