LEADER 01249nem0-2200373---450- 001 990009188670403321 005 20110412150905.0 035 $a000918867 035 $aFED01000918867 035 $a(Aleph)000918867FED01 035 $a000918867 100 $a20100524d1994----km-y0itay50------ba 101 0 $aita 102 $aIT 120 $ab-y------aa-- 121 $aaa-aabb-a$b-------- 123 1 $aa$b1:25000$de0131000$ee0132000$fn0420000$gn0415400 124 $aa$bd$c--$db$e-$f--$g-- 200 1 $aCastellafiume$bDocumento cartografico$fIGMI 206 $a1:25000 ; proiezione conforme universale trasversa di Mercatore (E13°10'-E13°20'/N42°00'-N41°54') 210 $aFirenze$cIGMI$d1994 215 $a1 carta$ccolor.$d58 x 47 cm su foglio 87 x 60 cm 225 1 $aCarta topografica d'Italia$iSerie 25$v376, 1 300 $aFonti di compilazione: ripresa aerofotogrammetrica 1985, ricognizione 1990 540 1 $aFoglio 376 Sezione 1 610 0 $aAbruzzo$aCarte 710 02$aIstituto geografico militare$05005 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aMP 912 $a990009188670403321 952 $aMP Cass.1 376(1)$bI.G. 2475$fILFGE 959 $aILFGE 996 $aCastellafiume$9775826 997 $aUNINA LEADER 00958nam a22002531i 4500 001 991002511059707536 005 20030711114421.0 008 030925s1936 be |||||||||||||||||fre 035 $ab1229889x-39ule_inst 035 $aARCHE-034646$9ExL 040 $aBiblioteca Interfacoltà$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a841.3 100 1 $aCharlier, Gustave$0194238 245 10$aJ.-B. Chassignet, historien /$cpar Gustave Charlier 260 $aParis :$bLibrairie E. Droz,$c1936 300 $a1 v. ;$c24 cm 500 $aEstr. da: Mélanges offerts à M. Abel Lefranc 650 4$aChassignet, Jean Baptiste 907 $a.b1229889x$b02-04-14$c08-10-03 912 $a991002511059707536 945 $aLE002 Busta C 45/8$g1$i2002000784209$lle002$o-$pE0.00$q-$rl$s- $t0$u0$v0$w0$x0$y.i12693509$z08-10-03 996 $aJ.-B. Chassignet, historien$9163622 997 $aUNISALENTO 998 $ale002$b08-10-03$cm$da $e-$ffre$gbe $h0$i1 LEADER 02659nam 22004695 450 001 9910254964703321 005 20240314154813.0 010 $a9781137549433 010 $a1137549432 024 7 $a10.1057/978-1-137-54943-3 035 $a(CKB)3710000000881803 035 $a(EBL)4716447 035 $a(DE-He213)978-1-137-54943-3 035 $a(MiAaPQ)EBC4716447 035 $a(Perlego)3487246 035 $a(EXLCZ)993710000000881803 100 $a20160830d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aUniversities, Disruptive Technologies, and Continuity in Higher Education $eThe Impact of Information Revolutions /$fby Gavin Moodie 205 $a1st ed. 2016. 210 1$aNew York :$cPalgrave Macmillan US :$cImprint: Palgrave Macmillan,$d2016. 215 $a1 online resource (282 p.) 300 $aDescription based upon print version of record. 311 08$a9781137549426 311 08$a1137549424 320 $aIncludes bibliographical references and index. 327 $aChapter 1 Changing Universities -- Chapter 2 Students and Society -- Chapter 3 Libraries -- Chapter 4 Curriculum -- Chapter 5 Pedagogical Change -- Chapter 6 Lectures -- Chapter 7 Assessment -- Chapter 8 Advancing Knowledge -- Chapter 9 Disseminating Knowledge -- Chapter 10 Progress and Prospects. . 330 $aThis book seeks to understand the effects of the current information revolution on universities by examining the effects of two previous information revolutions: Gutenberg?s invention and proof of printing in 1450 and the Scientific Revolution from the mid- fifteenth to the end of the seventeenth century. Moodie reviews significant changes since the early modern period in universities? students, libraries, curriculum, pedagogy, lectures, assessment, research, and the dissemination of these changes across the globe. He argues that significant changes in the transmission and dissemination of disciplinary knowledge are shaped by the interaction of three factors: financial, technological, and physical resources; the nature, structure and level of knowledge; and the methods available for managing knowledge. 606 $aEducation, Higher 606 $aHigher Education 615 0$aEducation, Higher. 615 14$aHigher Education. 676 $a370 700 $aMoodie$b Gavin$4aut$4http://id.loc.gov/vocabulary/relators/aut$0952158 906 $aBOOK 912 $a9910254964703321 996 $aUniversities, Disruptive Technologies, and Continuity in Higher Education$92511380 997 $aUNINA LEADER 08735nam 22005653 450 001 9911008940703321 005 20231229080238.0 010 $a9789815196689 010 $a9815196685 035 $a(CKB)29437192100041 035 $a(MiAaPQ)EBC31041840 035 $a(Au-PeEL)EBL31041840 035 $a(Exl-AI)31041840 035 $a(OCoLC)1416190111 035 $a(DE-B1597)730185 035 $a(DE-B1597)9789815196689 035 $a(Perlego)4318506 035 $a(EXLCZ)9929437192100041 100 $a20231229d2023 uy 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aBiocarbon Polymer Composites 205 $a1st ed. 210 1$aSharjah :$cBentham Science Publishers,$d2023. 210 4$d©2023. 215 $a1 online resource (168 pages) 311 08$a9789815196696 311 08$a9815196693 327 $aCover -- Title -- Copyright -- End User License Agreement -- Contents -- Preface -- Acknowledgement -- List of Contributors -- Synergistic Effect of Bio-Nanocarbon Embedded Polymer Nanocomposite and its Applications -- Vandana Molahalli1,2, Jasmine Joseph1,2, Kiran Bijapur1,2, Aman Sharma1,2, Gowri Soman1,2 and Gurumurthy Hegde1,2,* -- 1. INTRODUCTION -- 2. BIOCARBON FOR SUSTAINABLE ENVIRONMENT -- 3. BIOCARBON FOR SUPERCAPACITORS -- 4. BIOCARBON FOR MEDICAL APPLICATIONS -- 5. THERMAL CONDUCTIVITY STUDY OF BIOCARBON -- 6. BIOCARBON NANOMATERIALS IN SOLAR CELLS -- 7. POLYMER NANOCOMPOSITE -- 8. SYNTHESIS OF POLYMER NANOCOMPOSITE -- 8.1. In-situ Chemical Polymerization -- 8.2. Solution Method -- 8.3. Melt Extrusion -- 8.4. Sol-gel Method -- 8.5. Melt Blending -- 8.6. Hand Layup Method -- 9. RECENT ADVANCEMENTS IN THE CARBON BASED POLYMER NANOCOMPOSITE -- 10. SYNERGISTIC EFFECT OF BIO-NANOCARBON AND POLYMERS -- 10.1. Biocarbon Reinforced Thermoset Polymers -- 10.2. Epoxy Resin -- 10.3. Biocarbon-filled Polyurethane (PU) and Polyester Resin -- 10.4. Polylactic Acid (PLA) -- 11. CONDUCTING POLYMERS -- 12. APPLICATIONS OF BIOCARBON-BASED POLYMER NANOCOMPOSITE -- CONCLUSION -- ACKNOWLEDGEMENT -- REFERENCES -- Biochar-thermoplastic Polymer Composites: Recent Advances and Perspectives -- Giulio Malucelli1,2,* -- 1. INTRODUCTION -- 2. SYNTHESIS OF BIOCHAR (BC) -- 3. BIOCHAR-THERMOPLASTIC POLYMER COMPOSITES -- 3.1. Biochar in Polyolefins -- 3.2. Biochar in Polyamides -- 3.3. Biochar in Polyesters -- 3.4. Biochar in other Thermoplastic Matrices -- 4. CARBONACEOUS FILLERS VS. BIOCHAR IN THE DESIGN OF POLYMER COMPOSITES -- CONCLUSION AND FUTURE PERSPECTIVES -- ACKNOWLWDGEMENTS -- REFERENCES -- Animal-Based Biochar Reinforced Polymer Composites -- Radhika Mandala1,2,*, B. Anjaneya Prasad1 and Suresh Akella3 -- 1. INTRODUCTION -- 2. OVERVIEW OF CARBON. 327 $a2.1. Sources of Biocarbon -- 2.2. Synthesis of Animal-based Biocarbon -- 3. POLYMER COMPOSITE FABRICATION -- 4. THERMAL AND MECHANICAL PROPERTIES OF POLYMER COMPOSITES -- 4.1. Mechanical Properties -- 4.2. Thermal Properties -- CONCLUSION -- REFERENCES -- Harnessing Agro-based Biomass for Sustainable Thermal Energy Storage with Biochar Polymer Nanocomposites -- Venkateswara Rao Kode1,* -- 1. INTRODUCTION -- 2. COMPOSITION -- 2.1. Almonds -- 2.2. Walnuts -- 3. BIOCHAR -- 3.1. Synthesis -- 3.2. Pyrolysis -- 3.3. Gasification -- 3.4. Hydrothermal Carbonization -- 4. BIOCHAR-ENCAPSULATED POLYMER NANOCOMPOSITES: -- 4.1. Synthesis of Phase Change Materials -- 4.2. Characterization -- 5. THERMAL PROPERTIES -- CONCLUSION -- REFERENCES -- The Application of Biocarbon Polymer Nanocomposites as Filaments in the FDM Process - A Short Review -- Singaravel Balasubramaniyan1,*, Niranjan Thiruchinapalli2 and Rutika Umesh Kankrej1 -- 1. INTRODUCTION -- 2. LITERATURE REVIEW -- 3. DISCUSSION -- CONCLUSION -- REFERENCES -- Tensile Characteristics of FDM 3D Printed PBAT/PLA/Carbonaceous Biocomposites -- Gustavo F. Souza1, Rene R. Oliveira2, Janetty J.P. Barros1,3, Fernando L. Almeida4 and Esperidiana A.B. Moura1,* -- 1. INTRODUCTION -- 2. MATERIALS AND METHODS -- 2.1. Materials -- 2.2. Rice Husk ash (RHA) Preparation -- 2.3. Composite Preparation -- 2.4. Filament Preparation -- 2.5. FDM 3D Printing -- 2.6. Characterization Methods -- 2.6.1. Thermogravimetric Analyses (TGA) -- 2.6.2. Fourier Transform Infrared Spectroscopy (FTIR) -- 2.6.3. Scanning Electron Microscopy (SEM) -- 2.6.4. Mechanical Testing -- 3. RESULTS AND DISCUSSION -- 3.1. TGA -- 3.2. FTIR Analyses -- 3.3. SEM Analyses -- 3.4. Mechanical Tests -- CONCLUSION -- FUNDING SOURCES -- ACKNOWLEDGEMENT -- REFERENCES -- Biochar-Based Polymer Composites: A Pathway to Enhanced Electrical Conductivity. 327 $aMahesh K. Pallikonda1,* and Joao A. Antonangelo2 -- 1. INTRODUCTION -- 2. MECHANISMS OF ELECTRICAL CONDUCTIVITY IN POLYMER COMPOSITES -- 3. FACTORS INFLUENCING THE ELECTRICAL CONDUCTIVITY IN POLYMER COMPOSITES -- 3.1. Pyrolysis Temperature -- 3.2. Degree of Graphitization -- 3.3. Precursor Material -- 3.4. Different Concentrations of Filler Material -- CONCLUSION -- REFERENCES -- Coconut Shell Derived Carbon Reinforced Polymer Composite Films for Packaging Applications -- Gautam Chandrasekhar1 and Vijaya Rangari1,* -- 1. INTRODUCTION -- 1.1. Overview of Plant-derived Carbon-based Materials -- 1.2. Biochar Carbon-reinforced Polymer Composites -- 2. MATERIALS AND METHODS -- 2.1. Materials -- 2.2. Synthesis of Carbon by Pyrolysis -- 2.3. Characterization of the Synthesized Carbon -- 2.3.1. X-ray Diffraction (XRD) -- 2.3.2. Raman Spectroscopy -- 2.3.3. Scanning Electron Microscopy (SEM) -- 2.4. Blown Film Extrusion -- 2.5. Analysis of Films -- 2.5.1. Thermogravimetric Analysis -- 2.5.2. Differential Scanning Calorimetry -- 2.5.3. Tensile Test -- 3. RESULTS -- 3.1. Scanning Electron Microscopy of CSPC -- 3.2. X-ray Diffraction -- 3.3. Raman Spectroscopy -- 3.4. Thermogravimetric Analysis -- 3.5. Differential Scanning Calorimetry -- 3.6. Tensile Test -- 3.7. Fracture Surface Analysis of LDPE/CSPC Films using SEM -- CONCLUSION -- FUNDING SOURCES -- REFERENCES -- Carbon Based Polymer Composites in Water Treatment and Filtration -- Sabina Yeasmin1,* and Soma Bose1 -- 1. INTRODUCTION -- 2. BIOCHAR IN WATER TREATMENT -- 3. POLYMER NANOCOMPOSITES IN WATER FILTRATION -- CONCLUSION -- REFERENCES -- Subject Index. 330 $aThis book explores cutting-edge biocarbon polymer composites. The book brings together nine edited chapters that explore the development, properties, and applications of these eco-friendly materials, highlighting their potential to transform industries and reduce the environmental impact of traditional polymers. Spanning a range of critical topics, this book begins with an introduction to biocarbon and polymer materials, providing a solid foundation. It then progresses into the latest research on biocarbon sources, processing techniques, and characterization methods. Subsequent chapters cover the mechanical, thermal, and electrical properties of biocarbon polymer composites, along with their applications in diverse industries such as automotive, construction, and packaging. Contributors highlight real-world case studies and examples to showcase the practical relevance of these materials. Readers will gain a comprehensive understanding of the science and technology behind biocarbon polymer composites, enabling them to make informed decisions in materials selection and development. In an era of increasing environmental consciousness, this book emphasizes the eco-friendly nature of biocarbon composites, offering sustainable alternatives to traditional plastics. Additionally, this book bridges the information gaps between different disciplines and it is intended for a wide range of readers, from materials scientists and engineers to environmentalists and industry policymakers. Readership: Researchers and scientists in materials science and engineering; Professionals in industries seeking sustainable alternatives to traditional plastics; Environmentalists and policymakers interested in promoting eco-friendly materials; Academics and students studying materials science, polymer chemistry, and sustainable technologies; Innovators and entrepreneurs 330 8 $alooking to capitalize on emerging materials trends. 606 $aCarbon composites$7Generated by AI 606 $aPolymers$7Generated by AI 615 0$aCarbon composites 615 0$aPolymers 676 $a662.88 700 $aKodali$b Deepa$01826942 701 $aRangari$b Vijaya$01826943 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9911008940703321 996 $aBiocarbon Polymer Composites$94395008 997 $aUNINA