LEADER 03515nam 22007215 450 001 9910254623803321 005 20200705020818.0 010 $a3-662-49683-6 024 7 $a10.1007/978-3-662-49683-1 035 $a(CKB)3710000000621691 035 $a(EBL)4458119 035 $a(SSID)ssj0001654160 035 $a(PQKBManifestationID)16432806 035 $a(PQKBTitleCode)TC0001654160 035 $a(PQKBWorkID)14982975 035 $a(PQKB)10267961 035 $a(DE-He213)978-3-662-49683-1 035 $a(MiAaPQ)EBC4458119 035 $a(PPN)192773119 035 $a(EXLCZ)993710000000621691 100 $a20160324d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 14$aThe Source/Drain Engineering of Nanoscale Germanium-based MOS Devices /$fby Zhiqiang Li 205 $a1st ed. 2016. 210 1$aBerlin, Heidelberg :$cSpringer Berlin Heidelberg :$cImprint: Springer,$d2016. 215 $a1 online resource (71 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $aDescription based upon print version of record. 311 $a3-662-49681-X 320 $aIncludes bibliographical references. 327 $aIntroduction -- Ge-based Schottky barrier height modulation technology -- Metal germanide technology -- Contact resistance of Ge-based devices -- Conclusions. 330 $aThis book mainly focuses on reducing the high parasitic resistance in the source/drain of germanium nMOSFET. With adopting of the Implantation After Germanide (IAG) technique, P and Sb co-implantation technique and Multiple Implantation and Multiple Annealing (MIMA) technique, the electron Schottky barrier height of NiGe/Ge contact is modulated to 0.1eV, the thermal stability of NiGe is improved to 600? and the contact resistivity of metal/n-Ge contact is drastically reduced to 3.8×10?7??cm2, respectively. Besides, a reduced source/drain parasitic resistance is demonstrated in the fabricated Ge nMOSFET. Readers will find useful information about the source/drain engineering technique for high-performance CMOS devices at future technology node. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aSemiconductors 606 $aElectronic circuits 606 $aNanoscale science 606 $aNanoscience 606 $aNanostructures 606 $aSolid state physics 606 $aSemiconductors$3https://scigraph.springernature.com/ontologies/product-market-codes/P25150 606 $aElectronic Circuits and Devices$3https://scigraph.springernature.com/ontologies/product-market-codes/P31010 606 $aNanoscale Science and Technology$3https://scigraph.springernature.com/ontologies/product-market-codes/P25140 606 $aSolid State Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25013 615 0$aSemiconductors. 615 0$aElectronic circuits. 615 0$aNanoscale science. 615 0$aNanoscience. 615 0$aNanostructures. 615 0$aSolid state physics. 615 14$aSemiconductors. 615 24$aElectronic Circuits and Devices. 615 24$aNanoscale Science and Technology. 615 24$aSolid State Physics. 676 $a530 700 $aLi$b Zhiqiang$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767421 906 $aBOOK 912 $a9910254623803321 996 $aThe Source$92533245 997 $aUNINA