LEADER 03896nam 22007575 450 001 9910254611403321 005 20200701041748.0 010 $a3-319-21518-3 024 7 $a10.1007/978-3-319-21518-1 035 $a(CKB)3710000000478868 035 $a(EBL)4178405 035 $a(SSID)ssj0001584959 035 $a(PQKBManifestationID)16265695 035 $a(PQKBTitleCode)TC0001584959 035 $a(PQKBWorkID)14864691 035 $a(PQKB)10779137 035 $a(DE-He213)978-3-319-21518-1 035 $a(MiAaPQ)EBC4178405 035 $a(PPN)190536802 035 $a(EXLCZ)993710000000478868 100 $a20150922d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aComplexity and Control in Quantum Photonics /$fby Peter Shadbolt 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (222 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $a"Doctoral Thesis accepted by the University of Bristol, UK." 311 $a3-319-21517-5 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction and Essential Physics -- A Reconfigurable Two-qubit chip -- A Quantum Delayed-Choice Experiment -- Entanglement and Non locality without a Shared Frame -- Quantum Chemistry on a Photonic Chip -- Increased complexity -- Discussion. 330 $aThis work explores the scope and flexibility afforded by integrated quantum photonics, both in terms of practical problem-solving, and for the pursuit of fundamental science. The author demonstrates and fully characterizes a two-qubit quantum photonic chip, capable of arbitrary two-qubit state preparation. Making use of the unprecedented degree of reconfigurability afforded by this device, a novel variation on Wheeler?s delayed choice experiment is implemented, and a new technique to obtain nonlocal statistics without a shared reference frame is tested. Also presented is a new algorithm for quantum chemistry, simulating the helium hydride ion. Finally, multiphoton quantum interference in a large Hilbert space is demonstrated, and its implications for computational complexity are examined. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aQuantum optics 606 $aQuantum computers 606 $aSpintronics 606 $aChemistry, Physical and theoretical 606 $aQuantum theory 606 $aQuantum Optics$3https://scigraph.springernature.com/ontologies/product-market-codes/P24050 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aTheoretical and Computational Chemistry$3https://scigraph.springernature.com/ontologies/product-market-codes/C25007 606 $aQuantum Computing$3https://scigraph.springernature.com/ontologies/product-market-codes/M14070 606 $aQuantum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19080 615 0$aQuantum optics. 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aChemistry, Physical and theoretical. 615 0$aQuantum theory. 615 14$aQuantum Optics. 615 24$aQuantum Information Technology, Spintronics. 615 24$aTheoretical and Computational Chemistry. 615 24$aQuantum Computing. 615 24$aQuantum Physics. 676 $a530.12 700 $aShadbolt$b Peter$4aut$4http://id.loc.gov/vocabulary/relators/aut$0803695 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254611403321 996 $aComplexity and Control in Quantum Photonics$91805147 997 $aUNINA