LEADER 03890nam 22007575 450 001 9910254610003321 005 20200629141512.0 010 $a3-319-25571-1 024 7 $a10.1007/978-3-319-25571-2 035 $a(CKB)3710000000494191 035 $a(EBL)4068166 035 $a(SSID)ssj0001584926 035 $a(PQKBManifestationID)16265693 035 $a(PQKBTitleCode)TC0001584926 035 $a(PQKBWorkID)14864166 035 $a(PQKB)10012604 035 $a(DE-He213)978-3-319-25571-2 035 $a(MiAaPQ)EBC4068166 035 $a(PPN)190537183 035 $a(EXLCZ)993710000000494191 100 $a20151022d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aCharge and Spin Transport in Disordered Graphene-Based Materials /$fby Dinh Van Tuan 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (162 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $a"Doctoral Thesis accepted by Autonomous University of Barcelona, Spain." 311 $a3-319-25569-X 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Electronic and Transport Properties of Graphene -- The Real Space Order O(N) Transport Formalism -- Transport in Disordered Graphene -- Spin Transport in Disordered Graphene -- Conclusions. 330 $aThis thesis presents an in-depth theoretical analysis of charge and spin transport properties in complex forms of disordered graphene. It relies on innovative real space computational methods of the time-dependent spreading of electronic wave packets. First a universal scaling law of the elastic mean free path versus the average grain size is predicted for polycrystalline morphologies, and charge mobilities of up to 300.000 cm2/V.s are determined for 1 micron grain size, while amorphous graphene membranes are shown to behave as Anderson insulators. An unprecedented spin relaxation mechanism, unique to graphene and driven by spin/pseudospin entanglement is then reported in the presence of weak spin-orbit interaction (gold ad-atom impurities) together with the prediction of a crossover from a quantum spin Hall Effect to spin Hall effect (for thallium ad-atoms), depending on the degree of surface ad-atom segregation and the resulting island diameter. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aNanoscience 606 $aNanoscience 606 $aNanostructures 606 $aOptical materials 606 $aElectronics$xMaterials 606 $aMaterials?Surfaces 606 $aThin films 606 $aNanoscale Science and Technology$3https://scigraph.springernature.com/ontologies/product-market-codes/P25140 606 $aOptical and Electronic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z12000 606 $aSurfaces and Interfaces, Thin Films$3https://scigraph.springernature.com/ontologies/product-market-codes/Z19000 615 0$aNanoscience. 615 0$aNanoscience. 615 0$aNanostructures. 615 0$aOptical materials. 615 0$aElectronics$xMaterials. 615 0$aMaterials?Surfaces. 615 0$aThin films. 615 14$aNanoscale Science and Technology. 615 24$aOptical and Electronic Materials. 615 24$aSurfaces and Interfaces, Thin Films. 676 $a546.681 700 $aVan Tuan$b Dinh$4aut$4http://id.loc.gov/vocabulary/relators/aut$01062189 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254610003321 996 $aCharge and Spin Transport in Disordered Graphene-Based Materials$92523322 997 $aUNINA