LEADER 04126nam 22007335 450 001 9910254605503321 005 20200704022842.0 010 $a3-319-27233-0 024 7 $a10.1007/978-3-319-27233-7 035 $a(CKB)3710000000539393 035 $a(EBL)4199835 035 $a(SSID)ssj0001597293 035 $a(PQKBManifestationID)16297871 035 $a(PQKBTitleCode)TC0001597293 035 $a(PQKBWorkID)14886694 035 $a(PQKB)11698730 035 $a(DE-He213)978-3-319-27233-7 035 $a(MiAaPQ)EBC4199835 035 $a(PPN)190886811 035 $a(EXLCZ)993710000000539393 100 $a20151217d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aInterferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential /$fby Tarik Berrada 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (244 p.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $a"Doctoral Thesis accepted by Vienna University of Technology, Austria." 311 $a3-319-27232-2 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Theoretical Framework -- Experimental Setup and Techniques -- A Mach-Zehnder Interferometer for Trapped, Interacting Bose-Einstein Condensates -- Outlook: Bosonic Josephson Junctions Beyond the Two-Mode Approximation. 330 $aThis thesis demonstrates a full Mach?Zehnder interferometer with interacting Bose?Einstein condensates confined on an atom chip. It relies on the coherent manipulation of atoms trapped in a magnetic double-well potential, for which the author developed a novel type of beam splitter. Particle-wave duality enables the construction of interferometers for matter waves, which complement optical interferometers in precision measurement devices, both for technological applications and fundamental tests. This requires the development of atom-optics analogues to beam splitters, phase shifters and recombiners. Particle interactions in the Bose?Einstein condensate lead to a nonlinearity, absent in photon optics. This is exploited to generate a non-classical state with reduced atom-number fluctuations inside the interferometer. This state is then used to study the interaction-induced dephasing of the quantum superposition. The resulting coherence times are found to be a factor of three longer than expected for coherent states, highlighting the potential of entanglement as a resource for quantum-enhanced metrology. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aPhase transformations (Statistical physics) 606 $aCondensed materials 606 $aQuantum computers 606 $aSpintronics 606 $aLow temperature physics 606 $aLow temperatures 606 $aQuantum Gases and Condensates$3https://scigraph.springernature.com/ontologies/product-market-codes/P24033 606 $aQuantum Information Technology, Spintronics$3https://scigraph.springernature.com/ontologies/product-market-codes/P31070 606 $aLow Temperature Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P25130 615 0$aPhase transformations (Statistical physics). 615 0$aCondensed materials. 615 0$aQuantum computers. 615 0$aSpintronics. 615 0$aLow temperature physics. 615 0$aLow temperatures. 615 14$aQuantum Gases and Condensates. 615 24$aQuantum Information Technology, Spintronics. 615 24$aLow Temperature Physics. 676 $a535.470287 700 $aBerrada$b Tarik$4aut$4http://id.loc.gov/vocabulary/relators/aut$0805204 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254605503321 996 $aInterferometry with Interacting Bose-Einstein Condensates in a Double-Well Potential$91807718 997 $aUNINA