LEADER 03575nam 22006135 450 001 9910254597703321 005 20251116162234.0 010 $a3-319-44491-3 024 7 $a10.1007/978-3-319-44491-8 035 $a(CKB)3710000000909124 035 $a(DE-He213)978-3-319-44491-8 035 $a(MiAaPQ)EBC6310460 035 $a(MiAaPQ)EBC5588373 035 $a(Au-PeEL)EBL5588373 035 $a(OCoLC)960321749 035 $a(PPN)196322758 035 $a(EXLCZ)993710000000909124 100 $a20161001d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAnalytical Mechanics /$fby Carl S. Helrich 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XV, 349 p. 58 illus.) 225 1 $aUndergraduate Lecture Notes in Physics,$x2192-4791 311 08$a3-319-44490-5 320 $aIncludes bibliographical references and index. 327 $aHistory -- Lagrangian Mechanics -- Hamiltonian Mechanics -- Solid Bodies -- Hamilton-Jacobi Approach -- Complex Systems -- Chaos in Dynamical Systems -- Special Relativity -- Appendices -- Differential of S -- Hamilton-Jacobi Equation -- With Variables p, q, q -- Zero-Component Lemma -- Maxwell Equations from Field Strength Tensor -- Differential Operators -- Answers to Selected Exercises.       . 330 $aThis advanced undergraduate textbook begins with the Lagrangian formulation of Analytical Mechanics and then passes directly to the Hamiltonian formulation and the canonical equations, with constraints incorporated through Lagrange multipliers. Hamilton's Principle and the canonical equations remain the basis of the remainder of the text. Topics considered for applications include small oscillations, motion in electric and magnetic fields, and rigid body dynamics. The Hamilton-Jacobi approach is developed with special attention to the canonical transformation in order to provide a smooth and logical transition into the study of complex and chaotic systems. Finally the text has a careful treatment of relativistic mechanics and the requirement of Lorentz invariance. The text is enriched with an outline of the history of mechanics, which particularly outlines the importance of the work of Euler, Lagrange, Hamilton and Jacobi. Numerous exercises with solutions support the exceptionally clear and concise treatment of Analytical Mechanics.  . 410 0$aUndergraduate Lecture Notes in Physics,$x2192-4791 606 $aMechanics 606 $aPhysics 606 $aMechanics, Applied 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 606 $aMathematical Methods in Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P19013 606 $aTheoretical and Applied Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15001 615 0$aMechanics. 615 0$aPhysics. 615 0$aMechanics, Applied. 615 14$aClassical Mechanics. 615 24$aMathematical Methods in Physics. 615 24$aTheoretical and Applied Mechanics. 676 $a531.01515 700 $aHelrich$b Carl S.$4aut$4http://id.loc.gov/vocabulary/relators/aut$0749354 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254597703321 996 $aAnalytical mechanics$91508749 997 $aUNINA