LEADER 03862nam 22005895 450 001 9910254576803321 005 20200630211350.0 010 $a3-319-63441-0 024 7 $a10.1007/978-3-319-63441-8 035 $a(CKB)4340000000061880 035 $a(DE-He213)978-3-319-63441-8 035 $a(MiAaPQ)EBC4926883 035 $a(PPN)203669738 035 $a(EXLCZ)994340000000061880 100 $a20170727d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGlobular Cluster Binaries and Gravitational Wave Parameter Estimation $eChallenges and Efficient Solutions /$fby Carl-Johan Haster 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XII, 92 p. 37 illus., 9 illus. in color.) 225 1 $aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 300 $a"Doctoral Thesis accepted by the University of Birmingham, UK." 311 $a3-319-63440-2 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction --  N?body Dynamics of Intermediate Mass Ratio Inspirals -- Inference on Gravitational Waves from Coalescences of Stellar-mass Compact Objects and Intermediate-mass Black Holes -- Efficient Method for Measuring the Parameters Encoded in a Gravitational-wave Signal -- Conclusion. 330 $aThis thesis presents valuable contributions to several aspects of the rapidly growing field of gravitational wave astrophysics. The potential sources of gravitational waves in globular clusters are analyzed using sophisticated dynamics simulations involving intermediate mass black holes and including, for the first time, high-order post-Newtonian corrections to the equations of motion. The thesis further demonstrates our ability to accurately measure the parameters of the sources involved in intermediate-mass-ratio inspirals of stellar-mass compact objects into hundred-solar-mass black holes. Lastly, it proposes new techniques for the computationally efficient inference on gravitational waves. On 14 September 2015, the LIGO observatory reported the first direct detection of gravitational waves from the merger of a pair of black holes. For a brief fraction of a second, the power emitted by this merger exceeded the combined output of all stars in the visible universe. This has since been followed by another confirmed detection and a third candidate binary black hole merger. These detections heralded the birth of an exciting new field: gravitational-wave astrophysics. 410 0$aSpringer Theses, Recognizing Outstanding Ph.D. Research,$x2190-5053 606 $aAstrophysics 606 $aPhysics 606 $aGravitation 606 $aAstrophysics and Astroparticles$3https://scigraph.springernature.com/ontologies/product-market-codes/P22022 606 $aNumerical and Computational Physics, Simulation$3https://scigraph.springernature.com/ontologies/product-market-codes/P19021 606 $aClassical and Quantum Gravitation, Relativity Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/P19070 615 0$aAstrophysics. 615 0$aPhysics. 615 0$aGravitation. 615 14$aAstrophysics and Astroparticles. 615 24$aNumerical and Computational Physics, Simulation. 615 24$aClassical and Quantum Gravitation, Relativity Theory. 676 $a523.01 700 $aHaster$b Carl-Johan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0821839 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254576803321 996 $aGlobular Cluster Binaries and Gravitational Wave Parameter Estimation$92283944 997 $aUNINA