LEADER 01053nam0 22002891i 450 001 VAN0018955 005 20140625025023.238 010 $a08-10-94303-4 100 $a20040706d2000 |0itac50 ba 101 $aeng 102 $aUS 105 $a|||| ||||| 200 1 $a1900$eart at the crossroads$fby Robert Rosenblum and MaryAnne Stevens 210 $aNew York$aLondon$cHarry N. Abrams$d2000 215 $a448 p.$ccol. ill.$d31 cm. 517 1$3VAN0078032$aNineteen hundred 620 $aGB$dLondon$3VANL000015 676 $a709.040074$v21 700 1$aRosenblum$bRobert$3VANV015059$0155283 702 1$aStevens$bMaryAnne$3VANV015060 712 $aAbrams$3VANV109619$4650 801 $aIT$bSOL$c20230616$gRICA 899 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$1IT-CE0103$2VAN07 912 $aVAN0018955 950 $aBIBLIOTECA DEL DIPARTIMENTO DI LETTERE E BENI CULTURALI$d07CONS Cb Londra 2000 I $e07 9390 20041118 996 $a1900$91429192 997 $aUNICAMPANIA LEADER 03603nam 22006975 450 001 9910254335503321 005 20200630135541.0 010 $a3-319-51668-X 024 7 $a10.1007/978-3-319-51668-4 035 $a(CKB)3710000001127262 035 $a(DE-He213)978-3-319-51668-4 035 $a(MiAaPQ)EBC6286311 035 $a(MiAaPQ)EBC5577814 035 $a(Au-PeEL)EBL5577814 035 $a(OCoLC)974892179 035 $a(PPN)199767092 035 $a(EXLCZ)993710000001127262 100 $a20170302d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aComputational Intelligence Applications to Option Pricing, Volatility Forecasting and Value at Risk /$fby Fahed Mostafa, Tharam Dillon, Elizabeth Chang 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (X, 171 p. 23 illus.) 225 1 $aStudies in Computational Intelligence,$x1860-949X ;$v697 311 $a3-319-51666-3 327 $aCHAPTER 1 Introduction -- CHAPTER 2 Time Series Modelling -- CHAPTER 3 Options and Options Pricing Models -- CHAPTER 4 Neural Networks and Financial Forecasting -- CHAPTER 5 Important Problems in Financial Forecasting -- CHAPTER 6 Volatility Forecasting -- CHAPTER 7 Option Pricing -- CHAPTER 8 Value-at-Risk -- CHAPTER 9 Conclusion and Discussion. 330 $aThe results in this book demonstrate the power of neural networks in learning complex behavior from the underlying financial time series data . The results in this book also demonstrate how neural networks can successfully be applied to volatility modeling, option pricings, and value at risk modeling. These features allow them to be applied to market risk problems to overcome classical issues associated with statistical models. . 410 0$aStudies in Computational Intelligence,$x1860-949X ;$v697 606 $aComputational intelligence 606 $aArtificial intelligence 606 $aMacroeconomics 606 $aOperations research 606 $aDecision making 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aMacroeconomics/Monetary Economics//Financial Economics$3https://scigraph.springernature.com/ontologies/product-market-codes/W32000 606 $aOperations Research/Decision Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/521000 615 0$aComputational intelligence. 615 0$aArtificial intelligence. 615 0$aMacroeconomics. 615 0$aOperations research. 615 0$aDecision making. 615 14$aComputational Intelligence. 615 24$aArtificial Intelligence. 615 24$aMacroeconomics/Monetary Economics//Financial Economics. 615 24$aOperations Research/Decision Theory. 676 $a006.3 700 $aMostafa$b Fahed$4aut$4http://id.loc.gov/vocabulary/relators/aut$0996186 702 $aDillon$b Tharam$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aChang$b Elizabeth$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254335503321 996 $aComputational Intelligence Applications to Option Pricing, Volatility Forecasting and Value at Risk$92283017 997 $aUNINA