LEADER 03986nam 22006135 450 001 9910254321303321 005 20200706133817.0 010 $a3-319-51448-2 024 7 $a10.1007/978-3-319-51448-2 035 $a(CKB)3710000001177629 035 $a(DE-He213)978-3-319-51448-2 035 $a(MiAaPQ)EBC4844289 035 $a(PPN)200514407 035 $a(EXLCZ)993710000001177629 100 $a20170420d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aArtificial Intelligence in Label-free Microscopy $eBiological Cell Classification by Time Stretch /$fby Ata Mahjoubfar, Claire Lifan Chen, Bahram Jalali 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XXXIII, 134 p. 52 illus. in color.) 311 $a3-319-51447-4 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Background -- Nanometer-resolved imaging vibrometer -- Three-dimensional ultrafast laser scanner -- Label-free High-throughput Phenotypic Screening -- Time Stretch Quantitative Phase Imaging -- Big data acquisition and processing in real-time -- Deep Learning and Classification -- Optical Data Compression in Time Stretch Imaging -- Design of Warped Stretch Transform -- Concluding Remarks and Future Work -- References. 330 $aThis book introduces time-stretch quantitative phase imaging (TS-QPI), a high-throughput label-free imaging flow cytometer developed for big data acquisition and analysis in phenotypic screening. TS-QPI is able to capture quantitative optical phase and intensity images simultaneously, enabling high-content cell analysis, cancer diagnostics, personalized genomics, and drug development. The authors also demonstrate a complete machine learning pipeline that performs optical phase measurement, image processing, feature extraction, and classification, enabling high-throughput quantitative imaging that achieves record high accuracy in label -free cellular phenotypic screening and opens up a new path to data-driven diagnosis. ? Demonstrates how machine learning is used in high-speed microscopy imaging to facilitate medical diagnosis; ? Provides a systematic and comprehensive illustration of time stretch technology; ? Enables multidisciplinary application, including industrial, biomedical, and artificial intelligence. 606 $aBiomedical engineering 606 $aElectronics 606 $aMicroelectronics 606 $aOptical data processing 606 $aBioinformatics 606 $aBiomedical Engineering and Bioengineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T2700X 606 $aElectronics and Microelectronics, Instrumentation$3https://scigraph.springernature.com/ontologies/product-market-codes/T24027 606 $aImage Processing and Computer Vision$3https://scigraph.springernature.com/ontologies/product-market-codes/I22021 606 $aBioinformatics$3https://scigraph.springernature.com/ontologies/product-market-codes/L15001 615 0$aBiomedical engineering. 615 0$aElectronics. 615 0$aMicroelectronics. 615 0$aOptical data processing. 615 0$aBioinformatics. 615 14$aBiomedical Engineering and Bioengineering. 615 24$aElectronics and Microelectronics, Instrumentation. 615 24$aImage Processing and Computer Vision. 615 24$aBioinformatics. 676 $a610.28 700 $aMahjoubfar$b Ata$4aut$4http://id.loc.gov/vocabulary/relators/aut$0933279 702 $aChen$b Claire Lifan$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aJalali$b Bahram$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910254321303321 996 $aArtificial Intelligence in Label-free Microscopy$92100648 997 $aUNINA