LEADER 04664nam 22007815 450 001 9910254313403321 005 20220414225702.0 010 $a3-319-56934-1 024 7 $a10.1007/978-3-319-56934-5 035 $a(CKB)3710000001364124 035 $a(DE-He213)978-3-319-56934-5 035 $a(MiAaPQ)EBC4855613 035 $a(PPN)201469480 035 $a(EXLCZ)993710000001364124 100 $a20170505d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInternal variables in thermoelasticity /$fby Arkadi Berezovski, Peter Ván 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (VIII, 220 p. 37 illus.) 225 1 $aSolid Mechanics and Its Applications,$x0925-0042 ;$v243 311 $a3-319-56933-3 320 $aIncludes bibliographical references at the end of each chapters and index. 327 $aPart I Internal variables in thermomechanics -- 2 Introduction -- 3 Thermomechanical single internal variable theory -- 4 Dual internal variables -- Part II Dispersive elastic waves in one dimension -- 5 Internal variables and microinertia -- 6 Dispersive elastic waves -- 7 One-dimensional microelasticity -- 8 Influence of nonlinearity -- Part III Thermal effects -- 9 The role of heterogeneity in heat pulse propagation in a solid with inner structure -- 10 Heat conduction in microstructured solids -- 11 One-dimensional thermoelasticity with dual internal variables -- 12 Influence of microstructure on thermoelastic wave propagation -- Part IV Weakly nonlocal thermoelasticity for microstructured solids -- 13 Microdeformation and microtemperature -- Appendix A: Sketch of thermostatics -- Appendix B: Finite-volume numerical algorithm -- Index. 330 $aThis book describes an effective method for modeling advanced materials like polymers, composite materials and biomaterials, which are, as a rule, inhomogeneous. The thermoelastic theory with internal variables presented here provides a general framework for predicting a material?s reaction to external loading. The basic physical principles provide the primary theoretical information, including the evolution equations of the internal variables. The cornerstones of this framework are the material representation of continuum mechanics, a weak nonlocality, a non-zero extra entropy flux, and a consecutive employment of the dissipation inequality. Examples of thermoelastic phenomena are provided, accompanied by detailed procedures demonstrating how to simulate them. 410 0$aSolid Mechanics and Its Applications,$x0925-0042 ;$v243 606 $aMechanics 606 $aMechanics, Applied 606 $aThermodynamics 606 $aHeat engineering 606 $aHeat transfer 606 $aMass transfer 606 $aContinuum physics 606 $aMathematical physics 606 $aMathematical models 606 $aSolid Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15010 606 $aEngineering Thermodynamics, Heat and Mass Transfer$3https://scigraph.springernature.com/ontologies/product-market-codes/T14000 606 $aClassical and Continuum Physics$3https://scigraph.springernature.com/ontologies/product-market-codes/P2100X 606 $aMathematical Applications in the Physical Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/M13120 606 $aMathematical Modeling and Industrial Mathematics$3https://scigraph.springernature.com/ontologies/product-market-codes/M14068 615 0$aMechanics. 615 0$aMechanics, Applied. 615 0$aThermodynamics. 615 0$aHeat engineering. 615 0$aHeat transfer. 615 0$aMass transfer. 615 0$aContinuum physics. 615 0$aMathematical physics. 615 0$aMathematical models. 615 14$aSolid Mechanics. 615 24$aEngineering Thermodynamics, Heat and Mass Transfer. 615 24$aClassical and Continuum Physics. 615 24$aMathematical Applications in the Physical Sciences. 615 24$aMathematical Modeling and Industrial Mathematics. 676 $a531.382 700 $aBerezovski$b Arkadi$4aut$4http://id.loc.gov/vocabulary/relators/aut$0867442 702 $aVán$b Peter$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254313403321 996 $aInternal Variables in Thermoelasticity$91979649 997 $aUNINA