LEADER 03798nam 22007095 450 001 9910254308803321 005 20220329224328.0 010 $a3-319-53907-8 024 7 $a10.1007/978-3-319-53907-2 035 $a(CKB)3710000001127301 035 $a(DE-He213)978-3-319-53907-2 035 $a(MiAaPQ)EBC4833895 035 $a(PPN)199767556 035 $a(EXLCZ)993710000001127301 100 $a20170330d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFormal matrices /$fby Piotr Krylov, Askar Tuganbaev 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (VIII, 156 p.) 225 1 $aAlgebra and Applications,$x1572-5553 ;$v23 311 $a3-319-53906-X 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Construction of Formal Matrix Rings of Order 2 -- Modules over Formal Matrix Rings -- Formal Matrix Rings over a Given Ring -- Grothendieck and Whitehead Groups of Formal Matrix Rings. 330 $aThis monograph is a comprehensive account of formal matrices, examining homological properties of modules over formal matrix rings and summarising the interplay between Morita contexts and K theory. While various special types of formal matrix rings have been studied for a long time from several points of view and appear in various textbooks, for instance to examine equivalences of module categories and to illustrate rings with one-sided non-symmetric properties, this particular class of rings has, so far, not been treated systematically. Exploring formal matrix rings of order 2 and introducing the notion of the determinant of a formal matrix over a commutative ring, this monograph further covers the Grothendieck and Whitehead groups of rings. Graduate students and researchers interested in ring theory, module theory and operator algebras will find this book particularly valuable. Containing numerous examples, Formal Matrices is a largely self-contained and accessible introduction to the topic, assuming a solid understanding of basic algebra. 410 0$aAlgebra and Applications,$x1572-5553 ;$v23 606 $aAssociative rings 606 $aRings (Algebra) 606 $aCategory theory (Mathematics) 606 $aHomological algebra 606 $aK-theory 606 $aMatrix theory 606 $aAlgebra 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aCategory Theory, Homological Algebra$3https://scigraph.springernature.com/ontologies/product-market-codes/M11035 606 $aK-Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11086 606 $aLinear and Multilinear Algebras, Matrix Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11094 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 0$aCategory theory (Mathematics). 615 0$aHomological algebra. 615 0$aK-theory. 615 0$aMatrix theory. 615 0$aAlgebra. 615 14$aAssociative Rings and Algebras. 615 24$aCategory Theory, Homological Algebra. 615 24$aK-Theory. 615 24$aLinear and Multilinear Algebras, Matrix Theory. 676 $a512.9434 700 $aKrylov$b Piotr$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767413 702 $aTuganbaev$b Askar$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254308803321 996 $aFormal Matrices$92141282 997 $aUNINA