LEADER 01028nam a2200289 i 4500 001 991000961079707536 005 20020507104440.0 008 960427s1965 us ||| | eng 035 $ab10154012-39ule_inst 035 $aLE00639808$9ExL 040 $aDip.to Fisica$bita 084 $a510.42 084 $aQA403.B7 100 1 $aBracewell, Ronald N.$0462093 245 14$aThe Fourier transforms and its applications /$c[by] Ron Bracewell 260 $aNew York :$bMcGraw-Hill Book Co.,$cc1965 300 $aviii, 381 p. :$bill. ;$c23 cm. 500 $aBibliography : p. 23. 650 4$aFourier transformations 650 4$aHarmonic analysis 650 4$aTransformations (Mathematics) 907 $a.b10154012$b21-09-06$c27-06-02 912 $a991000961079707536 945 $aLE006 510.42 BRA$g1$i2006000021883$lle006$o-$pE0.00$q-$rl$s- $t0$u1$v0$w1$x0$y.i1018627x$z27-06-02 996 $aFourier transforms and its applications$9187937 997 $aUNISALENTO 998 $ale006$b01-01-96$cm$da $e-$feng$gus $h4$i1 LEADER 03370nam 22007095 450 001 9910254300703321 005 20250408081514.0 010 $a3-319-64671-0 024 7 $a10.1007/978-3-319-64671-8 035 $a(CKB)3710000001631071 035 $a(MiAaPQ)EBC4978947 035 $a(DE-He213)978-3-319-64671-8 035 $a(PPN)203851714 035 $a(EXLCZ)993710000001631071 100 $a20170816d2017 u| 0 101 0 $aeng 135 $aurcnu|||||||| 181 $2rdacontent 182 $2rdamedia 183 $2rdacarrier 200 10$aAlgorithms and Programs of Dynamic Mixture Estimation $eUnified Approach to Different Types of Components /$fby Ivan Nagy, Evgenia Suzdaleva 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (113 pages) $cillustrations, tables 225 1 $aSpringerBriefs in Statistics,$x2191-5458 311 08$a3-319-64670-2 320 $aIncludes bibliographical references. 327 $aIntroduction -- Basic Models -- Statistical Analysis of Dynamic Mixtures -- Dynamic Mixture Estimation -- Program Codes -- Experiments -- Appendices. 330 $aThis book provides a general theoretical background for constructing the recursive Bayesian estimation algorithms for mixture models. It collects the recursive algorithms for estimating dynamic mixtures of various distributions and brings them in the unified form, providing a scheme for constructing the estimation algorithm for a mixture of components modeled by distributions with reproducible statistics. It offers the recursive estimation of dynamic mixtures, which are free of iterative processes and close to analytical solutions as much as possible. In addition, these methods can be used online and simultaneously perform learning, which improves their efficiency during estimation. The book includes detailed program codes for solving the presented theoretical tasks. Codes are implemented in the open source platform for engineering computations. The program codes given serve to illustrate the theory and demonstrate the work of the included algorithms. 410 0$aSpringerBriefs in Statistics,$x2191-5458 606 $aProbabilities 606 $aStatistics 606 $aSystem theory 606 $aControl theory 606 $aComputer simulation 606 $aAlgorithms 606 $aProbability Theory 606 $aStatistical Theory and Methods 606 $aSystems Theory, Control 606 $aComputer Modelling 606 $aAlgorithms 615 0$aProbabilities. 615 0$aStatistics. 615 0$aSystem theory. 615 0$aControl theory. 615 0$aComputer simulation. 615 0$aAlgorithms. 615 14$aProbability Theory. 615 24$aStatistical Theory and Methods. 615 24$aSystems Theory, Control. 615 24$aComputer Modelling. 615 24$aAlgorithms. 676 $a519.544 700 $aNagy$b Ivan$4aut$4http://id.loc.gov/vocabulary/relators/aut$0766766 702 $aSuzdaleva$b Evgenia$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254300703321 996 $aAlgorithms and Programs of Dynamic Mixture Estimation$92018987 997 $aUNINA