LEADER 03972nam 22007575 450 001 9910254294203321 005 20230810190309.0 010 $a3-319-43476-4 024 7 $a10.1007/978-3-319-43476-6 035 $a(CKB)3710000001041181 035 $a(DE-He213)978-3-319-43476-6 035 $a(MiAaPQ)EBC6315739 035 $a(MiAaPQ)EBC5577663 035 $a(Au-PeEL)EBL5577663 035 $a(OCoLC)972330747 035 $a(PPN)198341482 035 $a(EXLCZ)993710000001041181 100 $a20170130d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDiscrete Probability Models and Methods $eProbability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding /$fby Pierre Brémaud 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XIV, 559 p. 92 illus.) 225 1 $aProbability Theory and Stochastic Modelling,$x2199-3149 ;$v78 311 $a3-319-43475-6 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- 1.Events and probability -- 2.Random variables -- 3.Bounds and inequalities -- 4.Almost-sure convergence -- 5.Coupling and the variation distance -- 6.The probabilistic method -- 7.Codes and trees -- 8.Markov chains -- 9.Branching trees -- 10.Markov fields on graphs -- 11.Random graphs -- 12.Recurrence of Markov chains -- 13.Random walks on graphs -- 14.Asymptotic behaviour of Markov chains -- 15.Monte Carlo sampling -- 16. Convergence rates -- Appendix -- Bibliography. 330 $aThe emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book. . 410 0$aProbability Theory and Stochastic Modelling,$x2199-3149 ;$v78 606 $aProbabilities 606 $aComputer science$xMathematics 606 $aMathematical statistics 606 $aGraph theory 606 $aCoding theory 606 $aInformation theory 606 $aComputer networks 606 $aProbability Theory 606 $aProbability and Statistics in Computer Science 606 $aGraph Theory 606 $aCoding and Information Theory 606 $aComputer Communication Networks 615 0$aProbabilities. 615 0$aComputer science$xMathematics. 615 0$aMathematical statistics. 615 0$aGraph theory. 615 0$aCoding theory. 615 0$aInformation theory. 615 0$aComputer networks. 615 14$aProbability Theory. 615 24$aProbability and Statistics in Computer Science. 615 24$aGraph Theory. 615 24$aCoding and Information Theory. 615 24$aComputer Communication Networks. 676 $a519.2 700 $aBrémaud$b Pierre$4aut$4http://id.loc.gov/vocabulary/relators/aut$056619 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254294203321 996 $aDiscrete probability models and methods$91560490 997 $aUNINA