LEADER 02780nam 22004335 450 001 9910254293303321 005 20200702144950.0 010 $a3-319-57259-8 024 7 $a10.1007/978-3-319-57259-8 035 $a(CKB)4340000000223216 035 $a(DE-He213)978-3-319-57259-8 035 $a(MiAaPQ)EBC5164437 035 $a(PPN)22125398X 035 $a(EXLCZ)994340000000223216 100 $a20171128d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAesthetics of Interdisciplinarity: Art and Mathematics /$fedited by Kristóf Fenyvesi, Tuuli Lähdesmäki 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2017. 215 $a1 online resource (XXV, 290 p. 157 illus., 114 illus. in color.) 311 $a3-319-57257-1 320 $aIncludes bibliographical references. 327 $aForeword -- Introduction: Towards an Interdisciplinary Aesthetics of Mathematical Art -- I Concepts, Theories, and Philosophies ? Bridging Arts and Mathematics -- II Understanding Mathematical Principles of Composition -- III Interpreting Geometry -- IV Experimenting and Implementing ? Practising Ars Mathematica. 330 $aThis anthology fosters an interdisciplinary dialogue between the mathematical and artistic approaches in the field where mathematical and artistic thinking and practice merge. The articles included highlight the most significant current ideas and phenomena, providing a multifaceted and extensive snapshot of the field and indicating how interdisciplinary approaches are applied in the research of various cultural and artistic phenomena. The discussions are related, for example, to the fields of aesthetics, anthropology, art history, art theory, artistic practice, cultural studies, ethno-mathematics, geometry, mathematics, new physics, philosophy, physics, study of visual illusions, and symmetry studies. Further, the book introduces a new concept: the interdisciplinary aesthetics of mathematical art, which the editors use to explain the manifold nature of the aesthetic principles intertwined in these discussions. 606 $aMathematics 606 $aMathematics in Art and Architecture$3https://scigraph.springernature.com/ontologies/product-market-codes/M34000 615 0$aMathematics. 615 14$aMathematics in Art and Architecture. 676 $a519 702 $aFenyvesi$b Kristóf$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aLähdesmäki$b Tuuli$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910254293303321 996 $aAesthetics of Interdisciplinarity$91562568 997 $aUNINA