LEADER 03841nam 22007815 450 001 9910254291003321 005 20250411151354.0 010 $a3-319-52045-8 024 7 $a10.1007/978-3-319-52045-2 035 $a(CKB)3710000001079876 035 $a(DE-He213)978-3-319-52045-2 035 $a(MiAaPQ)EBC6296491 035 $a(MiAaPQ)EBC5590618 035 $a(Au-PeEL)EBL5590618 035 $a(OCoLC)974463474 035 $a(PPN)198869622 035 $a(EXLCZ)993710000001079876 100 $a20170224d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aInformation Geometry and Population Genetics $eThe Mathematical Structure of the Wright-Fisher Model /$fby Julian Hofrichter, Jürgen Jost, Tat Dat Tran 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XII, 320 p. 3 illus., 2 illus. in color.) 225 1 $aUnderstanding Complex Systems,$x1860-0840 311 08$a3-319-52044-X 320 $aIncludes bibliographical references and index. 327 $a1. Introduction -- 2. The Wright?Fisher model -- 3. Geometric structures and information geometry -- 4. Continuous approximations -- 5. Recombination -- 6. Moment generating and free energy functionals -- 7. Large deviation theory -- 8. The forward equation -- 9. The backward equation -- 10.Applications -- Appendix -- A. Hypergeometric functions and their generalizations -- Bibliography. 330 $aThe present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field. 410 0$aUnderstanding Complex Systems,$x1860-0840 606 $aBiomathematics 606 $aStatistics 606 $aMedical genetics 606 $aMathematical analysis 606 $aGeometry 606 $aProbabilities 606 $aMathematical and Computational Biology 606 $aStatistical Theory and Methods 606 $aMedical Genetics 606 $aAnalysis 606 $aGeometry 606 $aProbability Theory 615 0$aBiomathematics. 615 0$aStatistics. 615 0$aMedical genetics. 615 0$aMathematical analysis. 615 0$aGeometry. 615 0$aProbabilities. 615 14$aMathematical and Computational Biology. 615 24$aStatistical Theory and Methods. 615 24$aMedical Genetics. 615 24$aAnalysis. 615 24$aGeometry. 615 24$aProbability Theory. 676 $a576.58015118 700 $aHofrichter$b Julian$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767161 702 $aJost$b Jürgen$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aTran$b Tat Dat$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254291003321 996 $aInformation Geometry and Population Genetics$92174112 997 $aUNINA