LEADER 06379nam 22006615 450 001 9910254284103321 005 20251113192328.0 010 $a3-319-44684-3 024 7 $a10.1007/978-3-319-44684-4 035 $a(CKB)3710000001393634 035 $a(DE-He213)978-3-319-44684-4 035 $a(MiAaPQ)EBC4871083 035 $z(PPN)258852607 035 $a(PPN)202991482 035 $a(EXLCZ)993710000001393634 100 $a20170602d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aTopological Methods in Data Analysis and Visualization IV $eTheory, Algorithms, and Applications /$fedited by Hamish Carr, Christoph Garth, Tino Weinkauf 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XI, 363 p. 153 illus., 129 illus. in color.) 225 1 $aMathematics and Visualization,$x2197-666X 311 08$a3-319-44682-7 320 $aIncludes bibliographical references at the end of each chapters. 327 $aPart 1: Topology-Based Analysis of Multi-Variate Data Sets: Theory of Singular Fibers and Reeb Spaces for Visualization: O. Saeki -- Topology-Based Analysis for Multimodal Atmospheric Data of Volcano Eruptions: A. Kuhn, W. Engelke, M. Flatken, F. Chen, H.-C. Hege, I. Hotz -- A Comparison of Joint Contour Nets and Pareto Sets: L. Huettenberger, C. Heine, C. Garth -- Part 2: Topological Techniques for High-Dimensional Data: Visualizing Topological Properties of the Search Landscape of Combinatorial Optimization Problems: S. Volke, D. Zeckzer, M. Middendorf, G. Scheuermann -- Computing and Visualizing Time-Varying Merge Trees for High-Dimensional Data: P. Oesterling, C. Heine, G. H. Weber, D. Morozov, G. Scheuermann -- Agreement analysis of quality measures for dimensionality reduction: B. Rieck, H. Leitte -- Part 3: Scalar Field Topology: Fast Similarity Search in Scalar Fields Using Merging Histograms: H. Saikia, H.-P. Seidel, T. Weinkauf -- Morse-Smale Analysis of Ion Diffusion in Ab Initio Battery Materials Simulations: A. Gyulassy, A. Knoll, P.-T. Bremer, B. Wang, K. Chun Lau, M. E. Papka, V. Pascucci, L. Curtiss -- Piecewise Polynomial Reconstruction of Scalar Fields from Simplified Morse-Smale Complexes: L. Allemand-Giorgis, G.-P. Bonneau, S. Hahmann -- Part 4: Vector & Tensor Field Topology: Topological Extraction of Escape Maps in Divergence-Free Vector Fields: R. Peikert, G. Machado, F. Sadlo -- Compute and Visualize Discontinuity Among Neighboring Integral Curves of 2D Vector Fields: L. Zhang, R. Laramee, D. Thompson, A. Sescu, G. Chen -- Decomposition of Vector Fields Beyond Problems of First Order and Their Applications: W. Reich, M. Hlawitschka, G. Scheuermann -- Maximum Number of Degenerate Curves in 3D Linear Tensor Fields: Y. Zhang, Y.-J. Tzeng, E. Zhang -- Part 5: Coherent Structures: Hierarchical Watershed Ridges for Visualizing Lagrangian Coherent Structures: M. Chen, J. C. Hart, S. C. Shadden -- Finite Time Steady 2D Vector Field Topology: A. Friederici, C. Rössl, H. Theisel -- Comparing Finite-Time Lyapunov Exponents in Approximated Vector Fields: S. Koch, S. Volke, G. Scheuermann, H. Hagen, M. Hlawitschka -- Transfer Operator-Based Extraction of Coherent Features on Surfaces: K. Padberg-Gehle, S. Reuther, S. Praetorius, A. Voigt -- Part 6: Software and Algorithms: ADAPT ? Adaptive Thresholds for Feature Extraction: P.-T. Bremer -- Efficient Software for Programmable Visual Analysis Using Morse-Smale Complexes: N. Shivashankar, V. Natarajan -- Notes on the Distributed Computation of Merge Trees on CW-Complexes: A. Landge, P.-T. Bremer, A. Gyulassy, V. Pascucci -- Computing Invariants of Knotted Graphs Given by Sequences of Points in 3-Dimensional Space: V. Kurlin. 330 $aThis book presents contributions on topics ranging from novel applications of topological analysis for particular problems, through studies of the effectiveness of modern topological methods, algorithmic improvements on existing methods, and parallel computation of topological structures, all the way to mathematical topologies not previously applied to data analysis. Topological methods are broadly recognized as valuable tools for analyzing the ever-increasing flood of data generated by simulation or acquisition. This is particularly the case in scientific visualization, where the data sets have long since surpassed the ability of the human mind to absorb every single byte of data. The biannual TopoInVis workshop has supported researchers in this area for a decade, and continues to serve as a vital forum for the presentation and discussion of novel results in applications in the area, creating a platform to disseminate knowledge about such implementations throughout andbeyond the community. The present volume, resulting from the 2015 TopoInVis workshop held in Annweiler, Germany, will appeal to researchers in the fields of scientific visualization and mathematics, domain scientists with an interest in advanced visualization methods, and developers of visualization software systems. 410 0$aMathematics and Visualization,$x2197-666X 606 $aInformation visualization 606 $aManifolds (Mathematics) 606 $aArtificial intelligence 606 $aComputer graphics 606 $aData and Information Visualization 606 $aManifolds and Cell Complexes 606 $aArtificial Intelligence 606 $aComputer Graphics 615 0$aInformation visualization. 615 0$aManifolds (Mathematics). 615 0$aArtificial intelligence. 615 0$aComputer graphics. 615 14$aData and Information Visualization. 615 24$aManifolds and Cell Complexes. 615 24$aArtificial Intelligence. 615 24$aComputer Graphics. 676 $a514 702 $aCarr$b Hamish$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aGarth$b Christoph$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aWeinkauf$b Tino$4edt$4http://id.loc.gov/vocabulary/relators/edt 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254284103321 996 $aTopological Methods in Data Analysis and Visualization IV$91935694 997 $aUNINA