LEADER 03538nam 22005895 450 001 9910254280603321 005 20251113212336.0 010 $a3-319-58795-1 024 7 $a10.1007/978-3-319-58795-0 035 $a(CKB)3710000001418384 035 $a(DE-He213)978-3-319-58795-0 035 $a(MiAaPQ)EBC4890267 035 $a(PPN)202991172 035 $a(EXLCZ)993710000001418384 100 $a20170627d2017 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApproximation with Positive Linear Operators and Linear Combinations /$fby Vijay Gupta, Gancho Tachev 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XIII, 186 p. 2 illus. in color.) 225 1 $aDevelopments in Mathematics,$x2197-795X ;$v50 311 08$a3-319-58794-3 320 $aIncludes bibliographical references and index. 327 $a1. Moments and Linear Combinations of Positive Linear Operators -- 2. Direct Estimates for Approximation by Linear Combinations -- 3. Inverse Estimates and Saturation Results for Linear Combinations -- 4. Voronovskaja Type Estimates -- 5. Pointwise Estimates for Linear Combinations -- 6. Voronovskaja's Theorem in Terms of Weighted Modulus of Continuity -- 7. Direct Estimates for Some New Operators -- 8. Convergence for Operators Based on P?lt?anea Basis -- Bibliography -- Index. . 330 $aThis book presents a systematic overview of approximation by linear combinations of positive linear operators, a useful tool used to increase the order of approximation. Fundamental and recent results from the past decade are described with their corresponding proofs. The volume consists of eight chapters that provide detailed insight into the representation of monomials of the operators Ln , direct and inverse estimates for a broad class of positive linear operators, and case studies involving finite and unbounded intervals of  real and complex functions. Strong converse inequalities of Type A in terminology of Ditzian?Ivanov for linear combinations of Bernstein and Bernstein?Kantorovich operators and various Voronovskaja-type estimates for some linear combinations are analyzed and explained. Graduate students and researchers in approximation theory will find the list of open problems in approximation of linear combinations useful. The book serves as a reference for graduate and postgraduate courses as well as a basis for future study and development.  . 410 0$aDevelopments in Mathematics,$x2197-795X ;$v50 606 $aApproximation theory 606 $aNumerical analysis 606 $aFunctional analysis 606 $aApproximations and Expansions 606 $aNumerical Analysis 606 $aFunctional Analysis 615 0$aApproximation theory. 615 0$aNumerical analysis. 615 0$aFunctional analysis. 615 14$aApproximations and Expansions. 615 24$aNumerical Analysis. 615 24$aFunctional Analysis. 676 $a511.4 700 $aGupta$b Vijay$4aut$4http://id.loc.gov/vocabulary/relators/aut$0721656 702 $aTachev$b Gancho$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254280603321 996 $aApproximation with Positive Linear Operators and Linear Combinations$91935693 997 $aUNINA