LEADER 02523nam 22005415 450 001 9910254277303321 005 20200701134926.0 010 $a3-319-54375-X 024 7 $a10.1007/978-3-319-54375-8 035 $a(CKB)4340000000062034 035 $a(DE-He213)978-3-319-54375-8 035 $a(MiAaPQ)EBC6314649 035 $a(MiAaPQ)EBC5577836 035 $a(Au-PeEL)EBL5577836 035 $a(OCoLC)1066177293 035 $a(PPN)201471884 035 $a(EXLCZ)994340000000062034 100 $a20170510d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aIntroduction to the Theory of Lie Groups /$fby Roger Godement 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (IX, 293 p.) 225 1 $aUniversitext,$x0172-5939 300 $aIncludes index. 311 $a3-319-54373-3 327 $aTopological Groups -- Simply Connected Spaces and Groups -- Analytic Properties of Linear Groups -- Manifolds and Lie Group -- The Lie Algebra of a Lie Group -- The Exponential Map for Lie Groups. 330 $aThis textbook covers the general theory of Lie groups. By first considering the case of linear groups (following von Neumann's method) before proceeding to the general case, the reader is naturally introduced to Lie theory. Written by a master of the subject and influential member of the Bourbaki group, the French edition of this textbook has been used by several generations of students. This translation preserves the distinctive style and lively exposition of the original. Requiring only basics of topology and algebra, this book offers an engaging introduction to Lie groups for graduate students and a valuable resource for researchers. 410 0$aUniversitext,$x0172-5939 606 $aTopological groups 606 $aLie groups 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 615 0$aTopological groups. 615 0$aLie groups. 615 14$aTopological Groups, Lie Groups. 676 $a512.482 700 $aGodement$b Roger$4aut$4http://id.loc.gov/vocabulary/relators/aut$0441293 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254277303321 996 $aIntroduction to the Theory of Lie Groups$92283981 997 $aUNINA