LEADER 04068nam 22008295 450 001 9910254275103321 005 20200706075323.0 010 $a981-10-4253-5 024 7 $a10.1007/978-981-10-4253-9 035 $a(CKB)4340000000062069 035 $a(DE-He213)978-981-10-4253-9 035 $a(MiAaPQ)EBC6313023 035 $a(MiAaPQ)EBC5578912 035 $a(Au-PeEL)EBL5578912 035 $a(OCoLC)987437850 035 $a(PPN)201469855 035 $a(EXLCZ)994340000000062069 100 $a20170509d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgebra 1 $eGroups, Rings, Fields and Arithmetic /$fby Ramji Lal 205 $a1st ed. 2017. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2017. 215 $a1 online resource (XVII, 433 p.) 225 1 $aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4036 300 $aIncludes index. 311 $a981-10-4252-7 327 $aChapter 1. Language of mathematics 1 (Logic) -- Chapter 2. Language Of Mathematics 2 (Set Theory) -- Chapter 3. Number System -- Chapter 4. Group Theory -- Chapter 5. Fundamental Theorems -- Chapter 6. Permutation groups and Classical Groups -- Chapter 7. Elementary Theory of Rings and Fields -- Chapter 8. Number Theory 2 -- Chapter 9. Structure theory of groups -- Chapter 10. Structure theory continued -- Chapter 11. Arithmetic in Rings. 330 $aThis is the first in a series of three volumes dealing with important topics in algebra. It offers an introduction to the foundations of mathematics together with the fundamental algebraic structures, namely groups, rings, fields, and arithmetic. Intended as a text for undergraduate and graduate students of mathematics, it discusses all major topics in algebra with numerous motivating illustrations and exercises to enable readers to acquire a good understanding of the basic algebraic structures, which they can then use to find the exact or the most realistic solutions to their problems. 410 0$aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4036 606 $aGroup theory 606 $aAssociative rings 606 $aRings (Algebra) 606 $aNonassociative rings 606 $aCommutative algebra 606 $aCommutative rings 606 $aAlgebra 606 $aField theory (Physics) 606 $aNumber theory 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aNon-associative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11116 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aField Theory and Polynomials$3https://scigraph.springernature.com/ontologies/product-market-codes/M11051 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aGroup theory. 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 0$aNonassociative rings. 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aAlgebra. 615 0$aField theory (Physics). 615 0$aNumber theory. 615 14$aGroup Theory and Generalizations. 615 24$aAssociative Rings and Algebras. 615 24$aNon-associative Rings and Algebras. 615 24$aCommutative Rings and Algebras. 615 24$aField Theory and Polynomials. 615 24$aNumber Theory. 676 $a512.2 700 $aLal$b Ramji$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767330 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254275103321 996 $aAlgebra 1$91984159 997 $aUNINA