LEADER 04434nam 22008175 450 001 9910254274803321 005 20200702160630.0 010 $a981-10-4256-X 024 7 $a10.1007/978-981-10-4256-0 035 $a(CKB)4340000000062070 035 $a(DE-He213)978-981-10-4256-0 035 $a(MiAaPQ)EBC6310565 035 $a(MiAaPQ)EBC5576893 035 $a(Au-PeEL)EBL5576893 035 $a(OCoLC)986989372 035 $a(PPN)201469847 035 $a(EXLCZ)994340000000062070 100 $a20170505d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAlgebra 2 $eLinear Algebra, Galois Theory, Representation theory, Group extensions and Schur Multiplier /$fby Ramji Lal 205 $a1st ed. 2017. 210 1$aSingapore :$cSpringer Singapore :$cImprint: Springer,$d2017. 215 $a1 online resource (XVIII, 432 p.) 225 1 $aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4036 311 $a981-10-4255-1 327 $aChapter 1. Vector Space -- Chapter 2. Matrices and Linear Equations -- Chapter 3. Linear Transformations -- Chapter 4. Inner Product Space -- Chapter 5. Determinants and Forms -- Chapter 6. Canonical Forms, Jordan and Rational Forms -- Chapter 7. General Linear Algebra -- Chapter 8. Field Theory, Galois Theory -- Chapter 9. Representation Theory of Finite Groups -- Chapter 10. Group Extensions and Schur Multiplier. 330 $aThis is the second in a series of three volumes dealing with important topics in algebra. Volume 2 is an introduction to linear algebra (including linear algebra over rings), Galois theory, representation theory, and the theory of group extensions. The section on linear algebra (chapters 1?5) does not require any background material from Algebra 1, except an understanding of set theory. Linear algebra is the most applicable branch of mathematics, and it is essential for students of science and engineering As such, the text can be used for one-semester courses for these students. The remaining part of the volume discusses Jordan and rational forms, general linear algebra (linear algebra over rings), Galois theory, representation theory (linear algebra over group algebras), and the theory of extension of groups follow linear algebra, and is suitable as a text for the second and third year students specializing in mathematics. . 410 0$aInfosys Science Foundation Series in Mathematical Sciences,$x2364-4036 606 $aMatrix theory 606 $aAlgebra 606 $aAssociative rings 606 $aRings (Algebra) 606 $aCommutative algebra 606 $aCommutative rings 606 $aNonassociative rings 606 $aGroup theory 606 $aNumber theory 606 $aLinear and Multilinear Algebras, Matrix Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M11094 606 $aAssociative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11027 606 $aCommutative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11043 606 $aNon-associative Rings and Algebras$3https://scigraph.springernature.com/ontologies/product-market-codes/M11116 606 $aGroup Theory and Generalizations$3https://scigraph.springernature.com/ontologies/product-market-codes/M11078 606 $aNumber Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/M25001 615 0$aMatrix theory. 615 0$aAlgebra. 615 0$aAssociative rings. 615 0$aRings (Algebra). 615 0$aCommutative algebra. 615 0$aCommutative rings. 615 0$aNonassociative rings. 615 0$aGroup theory. 615 0$aNumber theory. 615 14$aLinear and Multilinear Algebras, Matrix Theory. 615 24$aAssociative Rings and Algebras. 615 24$aCommutative Rings and Algebras. 615 24$aNon-associative Rings and Algebras. 615 24$aGroup Theory and Generalizations. 615 24$aNumber Theory. 676 $a512.9 700 $aLal$b Ramji$4aut$4http://id.loc.gov/vocabulary/relators/aut$0767330 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254274803321 996 $aAlgebra 2$91974899 997 $aUNINA