LEADER 04023nam 22006975 450 001 9910254260103321 005 20200630040218.0 010 $a3-319-30406-2 024 7 $a10.1007/978-3-319-30406-9 035 $a(CKB)3710000000627516 035 $a(SSID)ssj0001658402 035 $a(PQKBManifestationID)16442199 035 $a(PQKBTitleCode)TC0001658402 035 $a(PQKBWorkID)14987404 035 $a(PQKB)11640280 035 $a(DE-He213)978-3-319-30406-9 035 $a(MiAaPQ)EBC6304174 035 $a(MiAaPQ)EBC5594561 035 $a(Au-PeEL)EBL5594561 035 $a(OCoLC)1076243928 035 $a(PPN)192772147 035 $a(EXLCZ)993710000000627516 100 $a20160318d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aFuzzy Logic of Quasi-Truth: An Algebraic Treatment /$fby Antonio Di Nola, Revaz Grigolia, Esko Turunen 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (VI, 116 p. 3 illus.) 225 1 $aStudies in Fuzziness and Soft Computing,$x1434-9922 ;$v338 300 $aIncludes index. 311 $a3-319-30404-6 327 $aIntroduction -- Basic Notions -- Classical Sentential Calculus and Lukasiewicz Sentential Calculus -- MV -Algebras: Generalities -- Local MV -algebras -- Perfect MV -algebras -- The Variety Generated by Perfect MV -algebras -- Representations of Perfect MV -algebras -- The Logic of Perfect Algebras -- The Logic of Quasi True -- Perfect Pavelka Logic. 330 $aThis book presents the first algebraic treatment of quasi-truth fuzzy logic and covers the algebraic foundations of many-valued logic.  It offers a comprehensive account of basic techniques and reports on important results showing the pivotal role played by perfect many-valued algebras (MV-algebras). It is well known that the first-order predicate ?ukasiewicz logic is not complete with respect to the canonical set of truth values.  However, it is complete with respect to all linearly ordered MV ?algebras.  As there are no simple linearly ordered MV-algebras in this case, infinitesimal elements of an MV-algebra are allowed to be truth values. The book presents perfect algebras as an interesting subclass of local MV-algebras and provides readers with the necessary knowledge and tools for formalizing the fuzzy concept of quasi true and quasi false. All basic concepts are introduced in detail to promote a better understanding of the more complex ones. It is an advanced and inspiring reference-guide for graduate students and researchers in the field of non-classical many-valued logics. 410 0$aStudies in Fuzziness and Soft Computing,$x1434-9922 ;$v338 606 $aComputational intelligence 606 $aAlgebra 606 $aComputer science?Mathematics 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aGeneral Algebraic Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/M1106X 606 $aSymbolic and Algebraic Manipulation$3https://scigraph.springernature.com/ontologies/product-market-codes/I17052 615 0$aComputational intelligence. 615 0$aAlgebra. 615 0$aComputer science?Mathematics. 615 14$aComputational Intelligence. 615 24$aGeneral Algebraic Systems. 615 24$aSymbolic and Algebraic Manipulation. 676 $a511.3 700 $aDi Nola$b Antonio$4aut$4http://id.loc.gov/vocabulary/relators/aut$040958 702 $aGrigolia$b Revaz$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aTurunen$b Esko$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254260103321 996 $aFuzzy Logic of Quasi-Truth: An Algebraic Treatment$92542292 997 $aUNINA