LEADER 04248nam 22007335 450 001 9910254252903321 005 20200701140724.0 010 $a3-319-33606-1 024 7 $a10.1007/978-3-319-33606-0 035 $a(CKB)3710000000651931 035 $a(SSID)ssj0001665855 035 $a(PQKBManifestationID)16455302 035 $a(PQKBTitleCode)TC0001665855 035 $a(PQKBWorkID)14999718 035 $a(PQKB)10272484 035 $a(DE-He213)978-3-319-33606-0 035 $a(MiAaPQ)EBC6302056 035 $a(MiAaPQ)EBC5579172 035 $a(Au-PeEL)EBL5579172 035 $a(OCoLC)1066188407 035 $a(PPN)193444291 035 $a(EXLCZ)993710000000651931 100 $a20160427d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt 182 $cc 183 $acr 200 10$aIntelligent Numerical Methods II: Applications to Multivariate Fractional Calculus /$fby George A. Anastassiou, Ioannis K. Argyros 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XII, 116 p.) 225 1 $aStudies in Computational Intelligence,$x1860-949X ;$v649 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a3-319-33605-3 327 $aFixed Point Results and Applications in Left Multivariate Fractional Calculus -- Fixed Point Results and Applications in Right Multivariate Fractional Calculus -- Semi-local Iterative Procedures and Applications In K-Multivariate Fractional Calculus -- Newton-like Procedures and Applications in Multivariate Fractional Calculus -- Implicit Iterative Algorithms and Applications in Multivariate Calculus -- Monotone Iterative Schemes and Applications in Fractional Calculus -- Extending the Convergence Domain of Newton?s Method -- The Left Multidimensional Riemann-Liouville Fractional Integral -- The Right Multidimensional Riemann-Liouville Fractional Integral. 330 $aIn this short monograph Newton-like and other similar numerical methods with applications to solving multivariate equations are developed, which involve Caputo type fractional mixed partial derivatives and multivariate fractional Riemann-Liouville integral operators. These are studied for the first time in the literature. The chapters are self-contained and can be read independently. An extensive list of references is given per chapter. The book?s results are expected to find applications in many areas of applied mathematics, stochastics, computer science and engineering. As such this short monograph is suitable for researchers, graduate students, to be used in graduate classes and seminars of the above subjects, also to be in all science and engineering libraries. 410 0$aStudies in Computational Intelligence,$x1860-949X ;$v649 606 $aComputational intelligence 606 $aArtificial intelligence 606 $aComputer mathematics 606 $aComputational complexity 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aComputational Science and Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/M14026 606 $aComplexity$3https://scigraph.springernature.com/ontologies/product-market-codes/T11022 615 0$aComputational intelligence. 615 0$aArtificial intelligence. 615 0$aComputer mathematics. 615 0$aComputational complexity. 615 14$aComputational Intelligence. 615 24$aArtificial Intelligence. 615 24$aComputational Science and Engineering. 615 24$aComplexity. 676 $a519.535 700 $aAnastassiou$b George A$4aut$4http://id.loc.gov/vocabulary/relators/aut$060024 702 $aArgyros$b Ioannis K$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254252903321 996 $aIntelligent Numerical Methods II: Applications to Multivariate Fractional Calculus$92494563 997 $aUNINA