LEADER 04270nam 22007815 450 001 9910254194003321 005 20201107223619.0 010 $a9783319192550 010 $a3319192558 024 7 $a10.1007/978-3-319-19255-0 035 $a(CKB)3710000000452181 035 $a(EBL)3567960 035 $a(SSID)ssj0001534586 035 $a(PQKBManifestationID)11855993 035 $a(PQKBTitleCode)TC0001534586 035 $a(PQKBWorkID)11498108 035 $a(PQKB)10484663 035 $a(DE-He213)978-3-319-19255-0 035 $a(MiAaPQ)EBC3567960 035 $a(PPN)187685185 035 $a(EXLCZ)993710000000452181 100 $a20150725d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aAdvanced Multiresponse Process Optimisation $eAn Intelligent and Integrated Approach /$fby Tatjana V. ?ibalija, Vidosav D. Majstorovi? 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (309 p.) 300 $aDescription based upon print version of record. 311 08$a9783319192543 311 08$a331919254X 320 $aIncludes bibliographical references. 327 $aIntroduction -- Review of multiresponse optimisation approaches -- An intelligent, integrated, problem-independent method for multiresponse process optimisation -- Implementation of an intelligent, integrated, problem-independent method to multiresponse process optimisation -- Case studies -- Conclusion. 330 $aThis book presents an intelligent, integrated, problem-independent method for multiresponse process optimization. In contrast to traditional approaches, the idea of this method is to provide a unique model for the optimization of various processes, without imposition of assumptions relating to the type of process, the type and number of process parameters and responses, or interdependences among them. The presented method for experimental design of processes with multiple correlated responses is composed of three modules: an expert system that selects the experimental plan based on the orthogonal arrays; the factor effects approach, which performs processing of experimental data based on Taguchi?s quality loss function and multivariate statistical methods; and process modeling and optimization based on artificial neural networks and metaheuristic optimization algorithms. The implementation is demonstrated using four case studies relating to high-tech industries and advanced, non-conventional processes. 606 $aManufactures 606 $aArtificial intelligence 606 $aRobotics 606 $aAutomation 606 $aComputational intelligence 606 $aOperations research 606 $aDecision making 606 $aManufacturing, Machines, Tools, Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/T22050 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aRobotics and Automation$3https://scigraph.springernature.com/ontologies/product-market-codes/T19020 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aOperations Research/Decision Theory$3https://scigraph.springernature.com/ontologies/product-market-codes/521000 615 0$aManufactures. 615 0$aArtificial intelligence. 615 0$aRobotics. 615 0$aAutomation. 615 0$aComputational intelligence. 615 0$aOperations research. 615 0$aDecision making. 615 14$aManufacturing, Machines, Tools, Processes. 615 24$aArtificial Intelligence. 615 24$aRobotics and Automation. 615 24$aComputational Intelligence. 615 24$aOperations Research/Decision Theory. 676 $a620 700 $a?ibalija$b Tatjana V$4aut$4http://id.loc.gov/vocabulary/relators/aut$0760815 702 $aMajstorovi?$b Vidosav D$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910254194003321 996 $aAdvanced Multiresponse Process Optimisation$92514057 997 $aUNINA