LEADER 03652nam 22006855 450 001 9910254188603321 005 20200705020625.0 010 $a3-319-19635-9 024 7 $a10.1007/978-3-319-19635-0 035 $a(CKB)3710000000434207 035 $a(EBL)2095416 035 $a(OCoLC)911179604 035 $a(SSID)ssj0001524903 035 $a(PQKBManifestationID)11917404 035 $a(PQKBTitleCode)TC0001524903 035 $a(PQKBWorkID)11485038 035 $a(PQKB)10521273 035 $a(DE-He213)978-3-319-19635-0 035 $a(MiAaPQ)EBC2095416 035 $a(PPN)186397046 035 $a(EXLCZ)993710000000434207 100 $a20150616d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aFractional Order Darwinian Particle Swarm Optimization $eApplications and Evaluation of an Evolutionary Algorithm /$fby Micael Couceiro, Pedram Ghamisi 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (82 p.) 225 1 $aSpringerBriefs in Applied Sciences and Technology,$x2191-530X 300 $aDescription based upon print version of record. 311 $a3-319-19634-0 320 $aIncludes bibliographical references. 327 $aParticle Swarm Optimization (PSO) -- Fractional Order Darwinian PSO (FODPSO) -- Case Study I: Curve Fitting -- Case Study II: Image Segmentation -- Case Study III: Swarm Robotics -- Conclusions. 330 $aThis book examines the bottom-up applicability of swarm intelligence to solving multiple problems, such as curve fitting, image segmentation, and swarm robotics. It compares the capabilities of some of the better-known bio-inspired optimization approaches, especially Particle Swarm Optimization (PSO), Darwinian Particle Swarm Optimization (DPSO) and the recently proposed Fractional Order Darwinian Particle Swarm Optimization (FODPSO), and comprehensively discusses their advantages and disadvantages. Further, it demonstrates the superiority and key advantages of using the FODPSO algorithm, such as its ability to provide an improved convergence towards a solution, while avoiding sub-optimality. This book offers a valuable resource for researchers in the fields of robotics, sports science, pattern recognition and machine learning, as well as for students of electrical engineering and computer science. 410 0$aSpringerBriefs in Applied Sciences and Technology,$x2191-530X 606 $aComputational intelligence 606 $aArtificial intelligence 606 $aSystem theory 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 606 $aSystems Theory, Control$3https://scigraph.springernature.com/ontologies/product-market-codes/M13070 615 0$aComputational intelligence. 615 0$aArtificial intelligence. 615 0$aSystem theory. 615 14$aComputational Intelligence. 615 24$aArtificial Intelligence. 615 24$aSystems Theory, Control. 676 $a006.3 700 $aCouceiro$b Micael$4aut$4http://id.loc.gov/vocabulary/relators/aut$01064544 702 $aGhamisi$b Pedram$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254188603321 996 $aFractional Order Darwinian Particle Swarm Optimization$92538833 997 $aUNINA