LEADER 03886nam 22006615 450 001 9910254183903321 005 20200630113219.0 010 $a3-319-23606-7 024 7 $a10.1007/978-3-319-23606-3 035 $a(CKB)3710000000467443 035 $a(EBL)4178544 035 $a(SSID)ssj0001546655 035 $a(PQKBManifestationID)16141524 035 $a(PQKBTitleCode)TC0001546655 035 $a(PQKBWorkID)14796528 035 $a(PQKB)11239629 035 $a(DE-He213)978-3-319-23606-3 035 $a(MiAaPQ)EBC4178544 035 $a(PPN)188458360 035 $a(EXLCZ)993710000000467443 100 $a20150825d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aBiaxial Fatigue of Metals $eThe Present Understanding /$fby Jaap Schijve 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (30 p.) 225 1 $aSpringerBriefs in Applied Sciences and Technology,$x2191-530X 300 $aDescription based upon print version of record. 311 $a3-319-23605-9 320 $aIncludes bibliographical references. 327 $a1. Biaxial fatigue of metals. A survey of the present understanding -- 1.1. Introduction -- 2. Physical aspects of the fatigue phenomenon under uniaxial and biaxial loading -- 2.1. The fatigue phenomenon under uniaxial loading -- 2.2. Different modes of fatigue crack growth -- 2.3. The fatigue phenomenon under biaxial load cycles -- 3. Biaxial fatigue research programs -- 3.1. Two methods to describe biaxial load conditions -- 3.2. Specimens for research on biaxial fatigue -- 4. Predictions of fatigue properties for biaxial fatigue loads -- 4.1. Predictions and the similarity concept -- 4.2. Biaxial fatigue of full-scale structures -- 5. Summarizing conclusions -- References. 330 $aProblems of fatigue under multiaxial fatigue loads have been addressed in a very large number of research publications. The present publication is primarily a survey of biaxial fatigue under constant amplitude loading on metal specimens. It starts with the physical understanding of the fatigue phenomenon under biaxial fatigue loads. Various types of proportional and non-proportional biaxial fatigue loads and biaxial stress distributions in a material are specified. Attention is paid to the fatigue limit, crack nucleation, initial micro crack growth and subsequent macro-crack in different modes of crack growth. The interference between the upper and lower surfaces of a fatigue crack is discussed. Possibilities for predictions of biaxial fatigue properties are analysed with reference to the similarity concept. The significance of the present understanding for structural design problems is considered. The book is completed with a summary of major observations. 410 0$aSpringerBriefs in Applied Sciences and Technology,$x2191-530X 606 $aEngineering design 606 $aMetals 606 $aMechanics 606 $aEngineering Design$3https://scigraph.springernature.com/ontologies/product-market-codes/T17020 606 $aMetallic Materials$3https://scigraph.springernature.com/ontologies/product-market-codes/Z16000 606 $aClassical Mechanics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21018 615 0$aEngineering design. 615 0$aMetals. 615 0$aMechanics. 615 14$aEngineering Design. 615 24$aMetallic Materials. 615 24$aClassical Mechanics. 676 $a620.166 700 $aSchijve$b Jaap$4aut$4http://id.loc.gov/vocabulary/relators/aut$0316555 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254183903321 996 $aBiaxial Fatigue of Metals$91541085 997 $aUNINA