LEADER 03786nam 22006375 450 001 9910254170903321 005 20200702120956.0 010 $a3-319-51107-6 024 7 $a10.1007/978-3-319-51107-8 035 $a(CKB)3710000001041161 035 $a(DE-He213)978-3-319-51107-8 035 $a(MiAaPQ)EBC6300913 035 $a(MiAaPQ)EBC5578838 035 $a(Au-PeEL)EBL5578838 035 $a(OCoLC)970394110 035 $a(PPN)198340494 035 $a(EXLCZ)993710000001041161 100 $a20170119d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aFlexible and Generalized Uncertainty Optimization $eTheory and Methods /$fby Weldon A. Lodwick, Phantipa Thipwiwatpotjana 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (X, 190 p. 32 illus., 16 illus. in color.) 225 1 $aStudies in Computational Intelligence,$x1860-949X ;$v696 311 $a3-319-51105-X 327 $a1 An Introduction to Generalized Uncertainty Optimization -- 2 Generalized Uncertainty Theory: A Language for Information Deficiency -- 3 The Construction of Flexible and Generalized Uncertainty Optimization Input Data -- 4 An Overview of Flexible and Generalized Uncertainty Optimization -- 5 Flexible Optimization -- 6 Generalized Uncertainty Optimization -- References. . 330 $aThis book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. . 410 0$aStudies in Computational Intelligence,$x1860-949X ;$v696 606 $aComputational intelligence 606 $aOperations research 606 $aManagement science 606 $aProbabilities 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aOperations Research, Management Science$3https://scigraph.springernature.com/ontologies/product-market-codes/M26024 606 $aProbability Theory and Stochastic Processes$3https://scigraph.springernature.com/ontologies/product-market-codes/M27004 615 0$aComputational intelligence. 615 0$aOperations research. 615 0$aManagement science. 615 0$aProbabilities. 615 14$aComputational Intelligence. 615 24$aOperations Research, Management Science. 615 24$aProbability Theory and Stochastic Processes. 676 $a519.3 700 $aLodwick$b Weldon A$4aut$4http://id.loc.gov/vocabulary/relators/aut$0988548 702 $aThipwiwatpotjana$b Phantipa$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254170903321 996 $aFlexible and Generalized Uncertainty Optimization$92260463 997 $aUNINA