LEADER 03721nam 22006495 450 001 9910254170403321 005 20200703134438.0 024 7 $a10.1007/978-3-319-46873-0 035 $a(CKB)3710000001072411 035 $a(DE-He213)978-3-319-46873-0 035 $a(MiAaPQ)EBC4812058 035 $a(PPN)198872631 035 $a(EXLCZ)993710000001072411 100 $a20170223d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aGeneralized Lorenz-Mie Theories /$fby Gérard Gouesbet, Gérard Gréhan 205 $a2nd ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XXXVII, 331 p. 25 illus., 16 illus. in color.) 311 $a3-319-46872-3 311 $a3-319-46873-1 320 $aIncludes bibliographical references at the end of each chapters. 327 $aBackground in Maxwell?s Electromagnetism and Maxwell?s Equations -- Resolution of Special Maxwell?s Equations -- Generalized Lorenz-Mie Theories in the Strict Sense, and other GLMTs -- Gaussian Beams, and Other Beams -- Finite Series -- Special Cases of Axisymmetric and Gaussian Beams -- The Localized Approximation and Localized Beam Models -- Applications, and Miscellaneous Issues -- Conclusion. 330 $aThis book explores generalized Lorenz?Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. Although it particularly focuses on the homogeneous sphere, the book also considers other regular particles. It discusses in detail the methods available for evaluating beam shape coefficients describing the illuminating beam. In addition it features applications used in many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances and the mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Furthermore, it provides various computer programs relevant to the content. 606 $aFluid mechanics 606 $aOptics 606 $aElectrodynamics 606 $aTopological groups 606 $aLie groups 606 $aMicrowaves 606 $aOptical engineering 606 $aEngineering Fluid Dynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/T15044 606 $aClassical Electrodynamics$3https://scigraph.springernature.com/ontologies/product-market-codes/P21070 606 $aTopological Groups, Lie Groups$3https://scigraph.springernature.com/ontologies/product-market-codes/M11132 606 $aMicrowaves, RF and Optical Engineering$3https://scigraph.springernature.com/ontologies/product-market-codes/T24019 615 0$aFluid mechanics. 615 0$aOptics. 615 0$aElectrodynamics. 615 0$aTopological groups. 615 0$aLie groups. 615 0$aMicrowaves. 615 0$aOptical engineering. 615 14$aEngineering Fluid Dynamics. 615 24$aClassical Electrodynamics. 615 24$aTopological Groups, Lie Groups. 615 24$aMicrowaves, RF and Optical Engineering. 676 $a620.1064 700 $aGouesbet$b Gérard$4aut$4http://id.loc.gov/vocabulary/relators/aut$0929357 702 $aGréhan$b Gérard$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910254170403321 996 $aGeneralized Lorenz-Mie Theories$92088767 997 $aUNINA