LEADER 03932nam 22006375 450 001 9910254162503321 005 20200629124310.0 010 $a3-319-53609-5 024 7 $a10.1007/978-3-319-53609-5 035 $a(CKB)3710000001079865 035 $a(DE-He213)978-3-319-53609-5 035 $a(MiAaPQ)EBC6298165 035 $a(MiAaPQ)EBC5578297 035 $a(Au-PeEL)EBL5578297 035 $a(OCoLC)973879035 035 $a(PPN)198869150 035 $a(EXLCZ)993710000001079865 100 $a20170215d2017 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aAchieving Consensus in Robot Swarms $eDesign and Analysis of Strategies for the best-of-n Problem /$fby Gabriele Valentini 205 $a1st ed. 2017. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2017. 215 $a1 online resource (XIV, 146 p. 46 illus., 37 illus. in color.) 225 1 $aStudies in Computational Intelligence,$x1860-949X ;$v706 311 $a3-319-53608-7 320 $aIncludes bibliographical references. 327 $aIntroduction -- Part 1:Background and Methodology -- Discrete Consensus Achievement in Arti?cial Systems -- Modular Design of Strategies for the Best-of-n Problem -- Part 2:Mathematical Modeling and Analysis -- Indirect Modulation of Majority-Based Decisions -- Direct Modulation of Voter-Based Decisions -- Direct Modulation of Majority-Based Decisions -- Part 3:Robot Experiments -- A Robot Experiment in Site Selection -- A Robot Experiment in Collective Perception -- Part 4:Discussion and Annexes -- Conclusions -- Background on Markov Chains. 330 $aThis book focuses on the design and analysis of collective decision-making strategies for the best-of-n problem. After providing a formalization of the structure of the best-of-n problem supported by a comprehensive survey of the swarm robotics literature, it introduces the functioning of a collective decision-making strategy and identi?es a set of mechanisms that are essential for a strategy to solve the best-of-n problem. The best-of-n problem is an abstraction that captures the frequent requirement of a robot swarm to choose one option from of a ?nite set when optimizing bene?ts and costs. The book leverages the identi?cation of these mechanisms to develop a modular and model-driven methodology to design collective decision-making strategies and to analyze their performance at different level of abstractions. Lastly, the author provides a series of case studies in which the proposed methodology is used to design different strategies, using robot experiments to show how the designed strategies can be ported to different application scenarios. 410 0$aStudies in Computational Intelligence,$x1860-949X ;$v706 606 $aComputational intelligence 606 $aRobotics 606 $aAutomation 606 $aArtificial intelligence 606 $aComputational Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/T11014 606 $aRobotics and Automation$3https://scigraph.springernature.com/ontologies/product-market-codes/T19020 606 $aArtificial Intelligence$3https://scigraph.springernature.com/ontologies/product-market-codes/I21000 615 0$aComputational intelligence. 615 0$aRobotics. 615 0$aAutomation. 615 0$aArtificial intelligence. 615 14$aComputational Intelligence. 615 24$aRobotics and Automation. 615 24$aArtificial Intelligence. 676 $a006.3824 700 $aValentini$b Gabriele$4aut$4http://id.loc.gov/vocabulary/relators/aut$0911790 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254162503321 996 $aAchieving Consensus in Robot Swarms$92041863 997 $aUNINA