LEADER 03693nam 22007335 450 001 9910254108003321 005 20251116145119.0 010 $a3-319-28437-1 024 7 $a10.1007/978-3-319-28437-8 035 $a(CKB)3710000000541819 035 $a(EBL)4201223 035 $a(SSID)ssj0001597115 035 $a(PQKBManifestationID)16296520 035 $a(PQKBTitleCode)TC0001597115 035 $a(PQKBWorkID)14885975 035 $a(PQKB)10909952 035 $a(DE-He213)978-3-319-28437-8 035 $a(MiAaPQ)EBC4201223 035 $a(PPN)190884231 035 $a(EXLCZ)993710000000541819 100 $a20151222d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt 182 $cc 183 $acr 200 10$aModeling of Tropospheric Delays Using ANFIS /$fby Wayan Suparta, Kemal Maulana Alhasa 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (124 p.) 225 1 $aSpringerBriefs in Meteorology,$x2199-9112 300 $aDescription based upon print version of record. 311 08$a3-319-28435-5 320 $aIncludes bibliographical references and index. 327 $aIntroduction -- Adaptive Neuro Fuzzy Inference System -- Tropospheric Delay Modeling from GPS -- Estimation of ZTD Using ANFIS -- Prediction of ZTD Based on ANFIS Model. 330 $aThis book investigates tropospheric delays, one of the main error sources in Global Navigation Satellite Systems (GNSS), and its impact plays a crucial role in near real-time weather forecasting. Accessibility and accurate estimation of this parameter are essential for weather and climate research. Advances in GNNS application has allowed the measurements of Zenith Tropospheric Delay (ZTD) in all weather conditions and on a global scale with fine temporal and spatial resolution. However, GPS data are not always available for a full 24-hour period. Using a soft computing technique such as Adaptive Neuro-Fuzzy Inference System (ANFIS) as a new alternative, the ZTD can be determined by using the surface meteorological data as inputs. The estimation and prediction of ZTD value are presented in this book. 410 0$aSpringerBriefs in Meteorology,$x2199-9112 606 $aAtmospheric science 606 $aMeteorology 606 $aComputers 606 $aStatistical physics 606 $aDynamics 606 $aAtmospheric Sciences$3https://scigraph.springernature.com/ontologies/product-market-codes/G36000 606 $aMeteorology$3https://scigraph.springernature.com/ontologies/product-market-codes/312000 606 $aModels and Principles$3https://scigraph.springernature.com/ontologies/product-market-codes/I18016 606 $aComplex Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P33000 606 $aStatistical Physics and Dynamical Systems$3https://scigraph.springernature.com/ontologies/product-market-codes/P19090 615 0$aAtmospheric science. 615 0$aMeteorology. 615 0$aComputers. 615 0$aStatistical physics. 615 0$aDynamics. 615 14$aAtmospheric Sciences. 615 24$aMeteorology. 615 24$aModels and Principles. 615 24$aComplex Systems. 615 24$aStatistical Physics and Dynamical Systems. 676 $a550 700 $aSuparta$b Wayan$4aut$4http://id.loc.gov/vocabulary/relators/aut$01062783 702 $aAlhasa$b Kemal Maulana$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910254108003321 996 $aModeling of Tropospheric Delays Using ANFIS$92528553 997 $aUNINA