LEADER 04608nam 22005535 450 001 9910254098003321 005 20220415171140.0 010 $a3-319-31803-9 024 7 $a10.1007/978-3-319-31803-5 035 $a(CKB)3710000000734705 035 $a(EBL)4573593 035 $a(DE-He213)978-3-319-31803-5 035 $a(MiAaPQ)EBC4573593 035 $a(PPN)194381196 035 $a(EXLCZ)993710000000734705 100 $a20160629d2016 u| 0 101 0 $aeng 135 $aur|n|---||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aDependence logic $etheory and applications /$fedited by Samson Abramsky, Juha Kontinen, Jouko Väänänen, Heribert Vollmer 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Birkhäuser,$d2016. 215 $a1 online resource (286 p.) 300 $aDescription based upon print version of record. 311 $a3-319-31801-2 320 $aIncludes bibliographical references at the end of each chapters. 327 $aIntroduction -- Durand, Kontinen, Vollmer, Expressivity and Complexity of Dependence Logic -- Väänänen, Grelling on Dependence -- Galliani, On Strongly First-Order Dependencies -- Grädel, Games for Inclusion Logic and Fixed-Point Logic -- Hodges, Remarks on Compositionality -- Hirvonen, Independence in Model Theory -- Ciardelli, Dependency as Question Entailment -- Link, Approximation Logics for Subclasses of Probabilistic Conditional Independence and Hierarchical Dependence on Incomplete Data -- Nyman, Pensar, Corander, Context-Specific and Local Independence in Markovian Dependence Structures -- Pacuit, Fang, Dependence and Independence in Social Choice: Arrow's Theorem -- Blass, Introduction to Secret-Sharing. 330 $aIn this volume, different aspects of logics for dependence and independence are discussed, including both the logical and computational aspects of dependence logic, and also applications in a number of areas, such as statistics, social choice theory, databases, and computer security. The contributing authors represent leading experts in this relatively new field, each of whom was invited to write a chapter based on talks given at seminars held at the Schloss Dagstuhl Leibniz Center for Informatics in Wadern, Germany (in February 2013 and June 2015) and an Academy Colloquium at the Royal Netherlands Academy of Arts and Sciences (March 2014). Altogether, these chapters provide the most up-to-date look at this developing and highly interdisciplinary field and will be of interest to a broad group of logicians, mathematicians, statisticians, philosophers, and scientists. Topics covered include a comprehensive survey of many propositional, modal, and first-order variants of dependence logic; new results concerning expressive power of several variants of dependence logic with different sets of logical connectives and generalized dependence atoms; connections between inclusion logic and the least-fixed point logic; an overview of dependencies in databases by addressing the relationships between implication problems for fragments of statistical conditional independencies, embedded multivalued dependencies, and propositional logic; various Markovian models used to characterize dependencies and causality among variables in multivariate systems; applications of dependence logic in social choice theory; and an introduction to the theory of secret sharing, pointing out connections to dependence and independence logic. 606 $aMathematical logic 606 $aLogic 606 $aMathematical Logic and Foundations$3https://scigraph.springernature.com/ontologies/product-market-codes/M24005 606 $aMathematical Logic and Formal Languages$3https://scigraph.springernature.com/ontologies/product-market-codes/I16048 606 $aLogic$3https://scigraph.springernature.com/ontologies/product-market-codes/E16000 615 0$aMathematical logic. 615 0$aLogic. 615 14$aMathematical Logic and Foundations. 615 24$aMathematical Logic and Formal Languages. 615 24$aLogic. 676 $a510 702 $aAbramsky$b Samson$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aKontinen$b Juha$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aVäänänen$b Jouko$4edt$4http://id.loc.gov/vocabulary/relators/edt 702 $aVollmer$b Heribert$4edt$4http://id.loc.gov/vocabulary/relators/edt 906 $aBOOK 912 $a9910254098003321 996 $aDependence logic$91523259 997 $aUNINA