LEADER 00917nam a22002531i 4500 001 991001869779707536 005 20040110163039.0 008 040407s1935 it |||||||||||||||||ita 035 $ab12835705-39ule_inst 035 $aARCHE-081532$9ExL 040 $aDip.to Scienze Storiche$bita$cA.t.i. Arché s.c.r.l. Pandora Sicilia s.r.l. 082 04$a709.24 100 1 $aBertini, Aldo$0212734 245 12$aL'arte del Verrocchio /$cAldo Bertini 260 $a[S.l. :$bs.n.,$c1935?] 300 $a1 v. ;$c23 cm 500 $aEstr. da: L'arte, fasc. 6 (1935) 600 14$aVerrocchio, Andrea 907 $a.b12835705$b02-04-14$c16-04-04 912 $a991001869779707536 945 $aLE009 ARTE MISC. B/8 (Fondo Bottari)$g1$iLE009-3540/8$lle009$o-$pE0.00$q-$rn$so $t0$u0$v0$w0$x0$y.i13388332$z16-04-04 996 $aArte del Verrocchio$9297550 997 $aUNISALENTO 998 $ale009$b16-04-04$cm$da $e-$fita$git $h2$i1 LEADER 02908nam 22005535 450 001 9910254096603321 005 20251116155851.0 010 $a3-319-30034-2 024 7 $a10.1007/978-3-319-30034-4 035 $a(CKB)3710000000734699 035 $a(DE-He213)978-3-319-30034-4 035 $a(MiAaPQ)EBC5587946 035 $a(Au-PeEL)EBL5587946 035 $a(OCoLC)953034737 035 $a(PPN)194379175 035 $a(EXLCZ)993710000000734699 100 $a20160623d2016 u| 0 101 0 $aeng 135 $aurnn|008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 13$aAn Introductory Course in Lebesgue Spaces /$fby Rene Erlin Castillo, Humberto Rafeiro 205 $a1st ed. 2016. 210 1$aCham :$cSpringer International Publishing :$cImprint: Springer,$d2016. 215 $a1 online resource (XII, 461 p. 14 illus.) 225 1 $aCMS Books in Mathematics, Ouvrages de mathématiques de la SMC,$x1613-5237 311 08$a3-319-30032-6 327 $aConvex Functions and Inequalities -- Lebesgue Sequence Spaces -- Lebesgue Spaces -- Distribution Function and Non-Increasing Rearrangement -- Weak Lebesgue Spaces -- Lorentz Spaces -- Non-Standard Lebesgue Spaces -- Interpolation of Operators -- Maximal Operator -- Integral Operators -- Convolution and Potentials -- Appendices. 330 $aThis book is devoted exclusively to Lebesgue spaces and their direct derived spaces. Unique in its sole dedication, this book explores Lebesgue spaces, distribution functions and nonincreasing rearrangement. Moreover, it also deals with weak, Lorentz and the more recent variable exponent and grand Lebesgue spaces with considerable detail to the proofs. The book also touches on basic harmonic analysis in the aforementioned spaces. An appendix is given at the end of the book giving it a self-contained character. This work is ideal for teachers, graduate students and researchers. 410 0$aCMS Books in Mathematics, Ouvrages de mathématiques de la SMC,$x1613-5237 606 $aHarmonic analysis 606 $aFunctional analysis 606 $aAbstract Harmonic Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12015 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aHarmonic analysis. 615 0$aFunctional analysis. 615 14$aAbstract Harmonic Analysis. 615 24$aFunctional Analysis. 676 $a515.785 700 $aCastillo$b Rene Erlin$4aut$4http://id.loc.gov/vocabulary/relators/aut$0755823 702 $aRafeiro$b Humberto$4aut$4http://id.loc.gov/vocabulary/relators/aut 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910254096603321 996 $aAn Introductory Course in Lebesgue Spaces$92174089 997 $aUNINA