LEADER 00713nam0-22002651i-450- 001 990004745300403321 005 19990530 035 $a000474530 035 $aFED01000474530 035 $a(Aleph)000474530FED01 035 $a000474530 100 $a19990530g19599999km-y0itay50------ba 101 0 $aita 105 $af-------00--- 200 1 $aDiario senza date$fGastone Breccia 210 $aPisa$cNistri-Lischi$dc1959. 215 $a296 p., [5] c. di tav.$d21 cm 700 1$aBreccia,$bGastone$0189541 801 0$aIT$bUNINA$gRICA$2UNIMARC 901 $aBK 912 $a990004745300403321 952 $a3/XIV B 24$bBibl. 33264$fFLFBC 959 $aFLFBC 996 $aDiario senza date$9559183 997 $aUNINA LEADER 06148nam 22007452 450 001 9910786725703321 005 20151005020622.0 010 $a1-107-23668-1 010 $a1-107-34432-8 010 $a1-107-34912-5 010 $a1-107-35769-1 010 $a1-107-34807-2 010 $a1-107-34557-X 010 $a1-139-20864-0 010 $a1-107-34182-5 035 $a(CKB)2670000000353228 035 $a(EBL)1139705 035 $a(SSID)ssj0000871542 035 $a(PQKBManifestationID)11453981 035 $a(PQKBTitleCode)TC0000871542 035 $a(PQKBWorkID)10821138 035 $a(PQKB)11100914 035 $a(UkCbUP)CR9781139208642 035 $a(Au-PeEL)EBL1139705 035 $a(CaPaEBR)ebr10695366 035 $a(CaONFJC)MIL494736 035 $a(OCoLC)842919719 035 $a(MiAaPQ)EBC1139705 035 $a(PPN)261295772 035 $a(EXLCZ)992670000000353228 100 $a20111208d2013|||| uy| 0 101 0 $aeng 135 $aur||||||||||| 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 00$aGeometric and topological methods for quantum field theory $eproceedings of the 2009 Villa de Leyva summer school /$fedited by Alexander Cardona, Universidad de los Andes, Iva?n Contreras, University of Zurich, Andre?s F. Reyes-Lega, Universidad de los Andes$b[electronic resource] 210 1$aCambridge :$cCambridge University Press,$d2013. 215 $a1 online resource (x, 383 pages) $cdigital, PDF file(s) 300 $aTitle from publisher's bibliographic system (viewed on 05 Oct 2015). 311 $a1-107-02683-0 320 $aIncludes bibliographical references and index. 327 $aContents; Contributors; Introduction; 1 A brief introduction to Dirac manifolds; 1.1 Introduction; 1.1.1 Notation, conventions, terminology; 1.2 Presymplectic and Poisson structures; 1.2.1 Two viewpoints on symplectic geometry; 1.2.2 Going degenerate; 1.3 Dirac structures; 1.4 Properties of Dirac structures; 1.4.1 Lie algebroid; 1.4.2 Presymplectic leaves and null distribution; 1.4.3 Hamiltonian vector fields and Poisson algebra; 1.5 Morphisms of Dirac manifolds; 1.5.1 Pulling back and pushing forward; 1.5.2 Clean intersection and smoothness issues 327 $a1.6 Submanifolds of Poisson manifolds and constraints1.6.1 The induced Poisson bracket on admissible functions; 1.6.2 A word on coisotropic submanifolds (or first-class constraints); 1.6.3 Poisson-Dirac submanifolds and the Dirac bracket; 1.6.4 Momentum level sets; 1.7 Brief remarks on further developments; Acknowledgments; References; 2 Differential geometry of holomorphic vector bundles on a curve; 2.1 Holomorphic vector bundles on Riemann surfaces; 2.1.1 Vector bundles; 2.1.2 Topological classification; 2.1.3 Dolbeault operators and the space of holomorphic structures; 2.1.4 Exercises 327 $a2.2 Holomorphic structures and unitary connections2.2.1 Hermitian metrics and unitary connections; 2.2.2 The Atiyah-Bott symplectic form; 2.2.3 Exercises; 2.3 Moduli spaces of semi-stable vector bundles; 2.3.1 Stable and semi-stable vector bundles; 2.3.2 Donaldson's theorem; 2.3.3 Exercises; References; 3 Paths towards an extension of Chern-Weil calculus to a class of infinite dimensional vector bundles; Introduction; Part 1: Some useful infinite dimensional Lie groups; 3.1 The gauge group of a bundle; 3.2 The diffeomorphism group of a bundle 327 $a3.3 The algebra of zero-order classical pseudodifferential operators3.4 The group of invertible zero-order dos; Part 2: Traces and central extensions; 3.5 Traces on zero-order classical dos; 3.6 Logarithms and central extensions; 3.7 Linear extensions of the L2-trace; Part 3: Singular Chern-Weil classes; 3.8 Chern-Weil calculus in finite dimensions; 3.9 A class of infinite dimensional vector bundles; 3.10 Frame bundles and associated do-algebra bundles; 3.11 Logarithms and closed forms; 3.12 Chern-Weil forms in infinite dimensions; 3.13 Weighted Chern--Weil forms; discrepancies 327 $a3.13.1 The Hochschild coboundary of a weighted trace3.13.2 Dependence on the weight; Part 4: Circumventing anomalies; 3.13.3 Exterior differential of a weighted trace; 3.13.4 Weighted traces extended to admissible fibre bundles; 3.13.5 Obstructions to closedness of weighted Chern--Weil forms; 3.14 Renormalised Chern-Weil forms on do Grassmannians; 3.15 Regular Chern-Weil forms in infinite dimensions; Acknowledgements; References; 4 Introduction to Feynman integrals; 4.1 Introduction; 4.2 Basics of perturbative quantum field theory; 4.3 Dimensional regularisation 327 $a4.4 Loop integration in D dimensions 330 $aBased on lectures given at the renowned Villa de Leyva summer school, this book provides a unique presentation of modern geometric methods in quantum field theory. Written by experts, it enables readers to enter some of the most fascinating research topics in this subject. Covering a series of topics on geometry, topology, algebra, number theory methods and their applications to quantum field theory, the book covers topics such as Dirac structures, holomorphic bundles and stability, Feynman integrals, geometric aspects of quantum field theory and the standard model, spectral and Riemannian geometry and index theory. This is a valuable guide for graduate students and researchers in physics and mathematics wanting to enter this interesting research field at the borderline between mathematics and physics. 517 3 $aGeometric & Topological Methods for Quantum Field Theory 606 $aGeometric quantization 606 $aQuantum field theory$xMathematics 615 0$aGeometric quantization. 615 0$aQuantum field theory$xMathematics. 676 $a530.14/301516 686 $aSCI040000$2bisacsh 702 $aCardona$b Alexander 702 $aContreras$b Iva?n$f1985- 702 $aReyes-Lega$b Andre?s F.$f1973- 801 0$bUkCbUP 801 1$bUkCbUP 906 $aBOOK 912 $a9910786725703321 996 $aGeometric and topological methods for quantum field theory$9239592 997 $aUNINA LEADER 01821nam 22005414a 450 001 9910783327403321 005 20230617023257.0 010 $a1-59332-076-0 035 $a(CKB)1000000000032480 035 $a(OCoLC)614984348 035 $a(CaPaEBR)ebrary10076796 035 $a(SSID)ssj0000247436 035 $a(PQKBManifestationID)11188663 035 $a(PQKBTitleCode)TC0000247436 035 $a(PQKBWorkID)10196221 035 $a(PQKB)11214917 035 $a(MiAaPQ)EBC3016733 035 $a(Au-PeEL)EBL3016733 035 $a(CaPaEBR)ebr10076796 035 $a(OCoLC)56972020 035 $a(EXLCZ)991000000000032480 100 $a20030822d2003 uy 0 101 0 $aeng 135 $aurcn||||||||| 181 $ctxt 182 $cc 183 $acr 200 10$aSocial equity and the funding of community policing$b[electronic resource] /$fRicky S. Gutierrez 210 $aNew York $cLFB Scholarly Pub. LLC$d2003 215 $a1 online resource (254 p.) 225 1 $aCriminal justice recent scholarship 300 $aBibliographic Level Mode of Issuance: Monograph 311 $a1-59332-001-9 320 $aIncludes bibliographical references (p. 153-168) and index. 410 0$aCriminal justice (LFB Scholarly Publishing LLC) 606 $aFederal aid to law enforcement agencies$zUnited States 606 $aCommunity policing$zUnited States$xRegional disparities 615 0$aFederal aid to law enforcement agencies 615 0$aCommunity policing$xRegional disparities. 676 $a363.2/3/0973 700 $aGutierrez$b Ricky S.$f1953-$01543472 801 0$bMiAaPQ 801 1$bMiAaPQ 801 2$bMiAaPQ 906 $aBOOK 912 $a9910783327403321 996 $aSocial equity and the funding of community policing$93796955 997 $aUNINA LEADER 04528nam 22006135 450 001 9910254095703321 005 20251116155839.0 010 $a3-0348-0964-6 024 7 $a10.1007/978-3-0348-0964-1 035 $a(CKB)3710000000734691 035 $a(DE-He213)978-3-0348-0964-1 035 $a(MiAaPQ)EBC4561871 035 $a(PPN)194376680 035 $a(EXLCZ)993710000000734691 100 $a20160620d2016 u| 0 101 0 $aeng 135 $aurnn#008mamaa 181 $ctxt$2rdacontent 182 $cc$2rdamedia 183 $acr$2rdacarrier 200 10$aApplication of holomorphic functions in two and higher dimensions /$fby Klaus Gürlebeck, Klaus Habetha, Wolfgang Sprößig 205 $a1st ed. 2016. 210 1$aBasel :$cSpringer Basel :$cImprint: Birkhäuser,$d2016. 215 $a1 online resource (XV, 390 p. 7 illus., 3 illus. in color.) 311 08$a3-0348-0962-X 320 $aIncludes bibliographical references and index. 327 $a1.Basic Properties of Holomorphic Functions -- 2.Conformal and Quasi-conformal Mappings -- 3.Function Theoretic Function spaces -- 4.Operator Calculus -- 5.Decompositions -- 6.Some First Order Systems of Partial Differential Equations -- 7.Boundary Value Problems of Second Order Partial Differential Equations -- 8.Some Initial-boundary Value Problems -- 9.Riemann-Hilbert Problems -- 10.Initial Boundary Value Problems on the Sphere -- 11.Fourier Transforms -- Bibliography -- Index. 330 $aThis book presents applications of hypercomplex analysis to boundary value and initial-boundary value problems from various areas of mathematical physics. Given that quaternion and Clifford analysis offer natural and intelligent ways to enter into higher dimensions, it starts with quaternion and Clifford versions of complex function theory including series expansions with Appell polynomials, as well as Taylor and Laurent series. Several necessary function spaces are introduced, and an operator calculus based on modifications of the Dirac, Cauchy-Fueter, and Teodorescu operators and different decompositions of quaternion Hilbert spaces are proved. Finally, hypercomplex Fourier transforms are studied in detail. All this is then applied to first-order partial differential equations such as the Maxwell equations, the Carleman-Bers-Vekua system, the Schrödinger equation, and the Beltrami equation. The higher-order equations start with Riccati-type equations. Further topics include spatial fluid flow problems, image and multi-channel processing, image diffusion, linear scale invariant filtering, and others. One of the highlights is the derivation of the three-dimensional Kolosov-Mushkelishvili formulas in linear elasticity. Throughout the book the authors endeavor to present historical references and important personalities. The book is intended for a wide audience in the mathematical and engineering sciences and is accessible to readers with a basic grasp of real, complex, and functional analysis. 606 $aIntegral transforms 606 $aCalculus, Operational 606 $aFunctions of complex variables 606 $aDifferential equations, Partial 606 $aFunctional analysis 606 $aIntegral Transforms, Operational Calculus$3https://scigraph.springernature.com/ontologies/product-market-codes/M12112 606 $aFunctions of a Complex Variable$3https://scigraph.springernature.com/ontologies/product-market-codes/M12074 606 $aPartial Differential Equations$3https://scigraph.springernature.com/ontologies/product-market-codes/M12155 606 $aFunctional Analysis$3https://scigraph.springernature.com/ontologies/product-market-codes/M12066 615 0$aIntegral transforms. 615 0$aCalculus, Operational. 615 0$aFunctions of complex variables. 615 0$aDifferential equations, Partial. 615 0$aFunctional analysis. 615 14$aIntegral Transforms, Operational Calculus. 615 24$aFunctions of a Complex Variable. 615 24$aPartial Differential Equations. 615 24$aFunctional Analysis. 676 $a515.72 700 $aGu?rlebeck$b Klaus$4aut$4http://id.loc.gov/vocabulary/relators/aut$00 702 $aHabetha$b Klaus$4aut$4http://id.loc.gov/vocabulary/relators/aut 702 $aSpro?ssig$b Wolfgang$4aut$4http://id.loc.gov/vocabulary/relators/aut 906 $aBOOK 912 $a9910254095703321 996 $aApplication of Holomorphic Functions in Two and Higher Dimensions$91989922 997 $aUNINA